University of Wisconsin Milwaukee

UWM Digital Commons

Theses and Dissertations

May 2015
Gravitational Waves from Rotating Neutron Stars
and Compact Binary Systems

Leslie Wade

University of Wisconsin-Milwaukee

Follow this and additional works at: https://dc.uwm.edu/etd

b Part of the Astrophysics and Astronomy Commons, and the Physics Commons

Recommended Citation

Wade, Leslie, "Gravitational Waves from Rotating Neutron Stars and Compact Binary Systems" (2015). Theses and Dissertations. 934.
https://dc.uwm.edu/etd/934

This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations

by an authorized administrator of UWM Digital Commons. For more information, please contact open-access@uwm.edu.

www.manharaa.com



https://dc.uwm.edu/?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/123?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dc.uwm.edu/etd/934?utm_source=dc.uwm.edu%2Fetd%2F934&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:open-access@uwm.edu

GRAVITATIONAL WAVES FROM ROTATING
NEUTRON STARS AND COMPACT BINARY
SYSTEMS

by

Leslie E Wade IV

A DISSERTATION SUBMITTED IN
PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DocToRr OF PHILOSOPHY
IN PHYSICS

at
The University of Wisconsin—-Milwaukee
May 2015

www.manaraa.com



ABSTRACT

GRAVITATIONAL WAVES FROM ROTATING NEUTRON
STARS AND COMPACT BINARY SYSTEMS

The University of Wisconsin—Milwaukee, April 2015
Under the Supervision of Professors Xavier Siemens and Jolien Creighton

It is widely anticipated that the first direct detections of gravitational waves will be
made by advanced gravitational-wave detectors, such as the two Laser Interferometer
Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation
for the advanced detector era, I have worked on both detection and post-detection efforts
involving two gravitational wave sources: isolated rotating neutron stars (NSs) and com-
pact binary coalescences (CBCs). My dissertation includes three main research projects:
1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC
search for intermediate-mass black-hole binaries (IMBHBSs), and 3) new methods for di-
rectly measuring the neutron-star (NS) equation of state (EOS).

Direct detections of gravitational waves will enrich our current astrophysical knowl-
edge. One such contribution will be through population synthesis of isolated NSs. My
collaborators and I show that advanced gravitational-wave detectors can be used to con-
strain the properties of the Galactic NS population. Gravitational wave detections can
also shine light on a currently mysterious astrophysical object: intermediate mass black
holes. In developing the IMBHB search, we performed a mock data challenge where
signals with total masses up to a few hundred solar masses were injected into recolored
data from LIGOs sixth science run. Since this is the first time a matched filter search
has been developed to search for IMBHBSs, I discuss what was learned during the mock
data challenge and how we plan to improve the search going forward. The final aspect of
my dissertation focuses on important post-detection science. I present results for a new
method of directly measuring the NS EOS. This is done by estimating the parameters of a
4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent.

We show that advanced detectors will be capable of measuring the NS radius to within a

il
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kilometer for stars with canonical masses. However, this can only be accomplished with
binary NS waveform models that are accurate to the rich EOS physics that happens near
merger. We show that the waveforms typically used to model binary NS systems result

in unavoidable systematic error that can significantly bias the estimation of the NS EOS.

il
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Chapter 1

Introduction

Einstein’s theory of general relativity (GR) reimagines gravity as a consequence of the
curvature of spacetime caused by matter rather than an attractive force between objects
with mass. Einstein realized that spacetime was not just a platform for but a participant
in matter dynamics [2]. His field equations relate the motion of matter to the curvature
of spacetime caused by matter. Essentially, GR explains objects falling under the “pull”
of gravity and objects in orbit as merely those objects following the straightest possible
path in curved spacetime.

One of the natural products of this new understanding of gravity is the existence of
gravitational waves (GWs), which are oscillations in spacetime that carry information
about changes to gravitating sources, thereby preserving causality as required by special
relativity. As one might expect due to the relative weakness of the gravitational inter-
action, GWs and their effects are mostly unnoticeable. The only sources of GWs whose
effects are large enough to notice are astrophysical. For example, the emission of GWs
from binary neutron stars results in observable changes to the binary’s orbital evolution.
Most famously, the Hulse-Taylor pulsar’s orbit is decaying at precisely the rate that GR
predicts for orbital decay due to GW emission [3]. This discovery provides strong evidence
for the existence of GWs and won Hulse and Taylor the Nobel Prize in 1993.

Though the effects of GWs have clearly been observed, GWs have yet to be directly
detected. Kilometer-scale ground-based interferometers have been built in an effort to

make the first direct GW detections. The United States is home to the two most sensitive
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GW detectors, called the Laser Interferometric Gravitational-wave Observatory, or LIGO
for short. One of the LIGO sites is located in Hanford, WA, and the other LIGO site is
in Livingston, LA. The initial LIGO configuration referred to as iLIGO was online from
2002-2007 before it was upgraded to an enhanced configuration referred to as eLIGO,
which was online from 2009-2010. Though no GWs were detected in these science runs,
interesting upper limits were placed on certain GW sources [4-7]. The LIGO instruments
were again upgraded to an advanced configuration referred to as alLIGO, which will be
performing its first observing run in Fall 2015. It is widely anticipated that the first direct
GW detections will be made by the time the LIGO instruments reach design sensitivity
c. 2019 [8], and likely much sooner!

The most promising GW sources for aLIGO are compact binary coalescences (CBC)
involving black holes (BHs) and/or neutron stars (NSs). A CBC system consists of two
dense and massive astrophysical objects that are caught in orbit and continuously lose
energy to GWs before eventually colliding. Theoretical models of the form of a CBC
GW, or its waveform, depend on a systems source parameters. Such parameters include,
but are not limited to, the mass and spin of each component in the binary, the distance
between the binary and each detector, and the relative orientation of the binary to each
detector. By adjusting the values of the model’s source parameters, the form of the
modeled wave will change.

To search for CBC signals in detector data, we filter the data through a bank of the-
oretically produced gravitational waveform models and calculate how well each template
matches the data. We can then estimate the probability that a GW signal exists in the
data.

Analysis does not end at a detection. Instead, we hope to use GW signals to study
their astrophysical sources. After a detection is made, the data around that time can be
more thoroughly analyzed to find the most probable combinations of waveform parameters
that resulted in the detected signal. This process is called parameter estimation, and is
discussed in more detail in Sec. 4.3. GW observatories will work like another type of
telescope for studying astrophysical objects.

Several other ground-based interferometers have been built for detecting GWs. Most
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notably, the VIRGO detector located in Tuscany, Italy can reach sensitivities comparable
to the LIGO detectors. It too is undergoing upgrades to an advanced configuration, called
Advanced VIRGO. Advanced VIRGO will play an important role in GW detection and
parameter estimation because it can be used to increase the significance of events for
detection as well as better localize sources in the sky resulting in improved parameter
estimation.

In Ch. 1, we introduce the theory behind GWs and briefly describe ground-based inter-
ferometric detectors. In Ch. 2, we discuss GW emission from another source: isolated ro-
tating NSs. Isolated neutron stars that are not axisymmetric will continuously emit GWs
as they rotate. In this chapter, we discuss a project in which we simulated the Milky Way’s
NS population to determine how well advanced detectors can constrain certain proper-
ties of NSs. In Ch. 3, we discuss development for a CBC search for intermediate-mass
BH binaries (IMBHBs). Due to the improved low-frequency sensitivity, more massive
binary systems such as IMBHBs that merge at relatively low frequencies might be de-
tectable with advanced detectors. In Ch. 4, we outline a parameter estimation approach
for estimating the size of tidal effects in merging NSs, which is intimately related to the
NS equation of state (EOS). In addition, we outline the statistical and systematic errors
associated with such measurements. We then improve upon this approach in Ch. 5 by
reparameterizing from tidal parameters to EOS parameters in order to make direct EOS
measurements. This approach has the added benefit of being able to combine information
from many BNS detections as well as include any observational or physical restrictions
on the NS EOS. We end with a discussion in Ch. 6.

In this chapter, we briefly review the major pieces of gravitational-wave theory. In
Sec. 1.1, we start with how GWs fall out of Einstein’s equations, then describe how
GWs affect matter and can be detected by an interferometer, and finish with how GWs
are sourced. In Sec. 1.2, we discuss two types of gravitating systems: isolated rotating
neutron stars and compact binary coalescences. In particular, we discuss a model for
their waveform. We finish by briefly discussing ground-based interferometers and their

properties in Sec. 1.3.
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1.1 Gravitational wave review! 4

The Einstein field equations
8t

Ga,@ - ?Taﬂ, (111)

which distinguish GR from other metric theories of gravity, relate the curvature of space-

time to the source of the curvature, which is matter. Here, G,z is the Einstein tensor

1
Gag = Rag — égagR, (1.1.2)

where the Ricci tensor Ry = ¢"" Rougy = Rauﬁ“ , the Ricci scalar R = ¢g" R, = Ru“,
and R,s,s is the Riemann curvature tensor. The metric tensor (or the metric for short)

defines the distance s between two points in spacetime via
ds® = g, dz"dz”. (1.1.3)

It is therefore fundamental to any metric theory of gravity, such as GR, since it defines

the entire geometry of the spacetime. For flat spacetime in rectilinear coordinates, the

metric is: _ -
-2 0 00
0 100
Gap = Nap = (114)
0 010
0 001
The matter stress energy tensor 7,3 has the following parts:
T" = p (1.1.5)
T™"=T" = J (1.1.6)
TV = SS9 (1.1.7)

where p is the mass density, J? are the components of the momentum density, and S%

are the components of the stress tensor. Another way of writing this is

!The entirety of this section closely follows Refs. [2] and [9)].
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p — J =
| TN TS
Jio— SU
AR

1.1.1 Linearized gravity

Assuming the gravitational field is weak, which is referred to as linearized gravity, the

metric gog is just a perturbation h.s to the flat-space metric 7,4:

gaﬁ = 77046 —f— ha/g. (118)

Under this assumption and only keeping terms to first order, the Einstein field equations

become: )
D2 R 0*h/; D2 167G
. L 9hs | OThe
Oxtoxy — Ox*0xt  OxrOzP ct

where O = n*9?/(92#9x") is the d’Alembertian operator and hag = hag — $7ash is

—Ohag Tus, (1.1.9)

the trace-reversed metric perturbation, where h = n*h,,, = h *. By moving to another
gauge in which the divergence of the trace-reversed metric is zero (9h*®/0z* = 0), which

is called the Lorenz gauge, the Einstein field equations simply become:

_ 167G
—Ohas ~ C—ZTW. (1.1.10)

It can be shown that a Lorenz gauge can always be found.

1.1.2 Linearized gravity + vacuum spacetime = gravitational waves

In a spacetime in which there is no matter, the linearized vacuum Einstein field equations
in the Lorenz gauge become:

Ohes = 0. (1.1.11)

Such a spacetime would be a good approximation to being hit by weak GWs in an
otherwise empty area of spacetime far from a gravitating source. A solution to Eq. (1.1.11)
is the plane wave solution, and the Lorenz condition Oh#®/0z* = 0 ensures that the

plane wave is transverse, meaning that its amplitude is perpendicular to its propagation.
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There is enough gauge freedom left within the Lorenz gauge to choose a gauge that
also makes the trace-reversed metric perturbation traceless (6“h;; = 0) and completely
spatial (ho = 0), and this is called the transverse traceless (TT) gauge. In the TT gauge,
hap = hag = hL} since the perturbation is traceless. Additionally, if we align the z-axis
along the direction of propagation of the transverse plane wave, Eq. (1.1.11) indicates
that the components of the perturbation must be functions of the retarded time t — z/c.
Therefore, in the TT gauge, the solution of the vacuum Einstein field equations for the
metric perturbation are transverse plane waves traveling at the speed of light, and these
are called gravitational waves.

The TT gauge reveals that GWs only have two polarizations in GR. For a GW trav-
eling in the z-direction, the Lorenz condition (now dh%/dx® = 0 since the perturbation
is purely spatial) implies that 0h*/0x* = 0, meaning h.;(t — z/c) = h.i(t — z/c) =
hIT(t—z/c) = constant. We can take this constant to be zero. The non-zero components

hTT hTT hTT

are g, , zy o yx

and hgyT . Since the perturbation is symmetric,

hay = hiy = hy(t — z/c), (1.1.12)
and since the perturbation is traceless and ATl = 0,
hid = —hiT = h.(t—z/c). (1.1.13)

We refer to these two polarizations as “plus” and “cross” because of how they affect

masses, which can be seen in Fig. 1 and is touched on in the following subsection.

1.1.3 How GWs affect test masses (and detector)?

The equations of motion for objects under the influence of gravity are the geodesic equa-

tions
x> dotda”
dr2 M dr dr’

(1.1.14)

where 7 is the proper time. The coordinate acceleration can be found by taking coor-
dinate time derivatives instead of proper time derivatives. Assuming linearized gravity

with the non-flat components of the metric dominated by a GW in the TT gauge, and

2The example used in this subsection is from Ref. [2]
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Figure 1 : GWs in GR have two polarizations: plus (top) and cross (bottom). The proper separations
of particles in a ring will be affected by a GW traveling into the page as depicted, where the axis is time
and T is the period of the GW.

assuming non-relativistic motion for a test-particle undergoing a coordinate acceleration,

Eq. (1.1.14) reduces to
% =T, =0. (1.1.15)
This does not mean that test particles are unaffected by GWs. It just means that the
coordinate acceleration of test particles is zero in the T'T gauge. This means that the T'T
gauge is a gauge whose coordinates move with the GW, thus conserving the coordinate
separation between freely falling test particles.
To determine the proper separation between two test particles in the presence of a

GW, consider two test particles located on the x-axis at z = 0 and separated by coordinate

distance L.. The proper distance between the two freely falling test particles is

L) — /OLC@M (1.1.16)
_ LC\/W@C (1.1.17)

~ ll+%h;ff(t)] /OLC dx (1.1.18)
= L. {1 + %hgf(t)] : (1.1.19)

The above integral was so easily computed because the coordinate separation does not
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change over time for freely falling particles in the TT gauge. While GWs do not affect
coordinate separations between freely falling particles, they do affect proper separations.
Therefore, GWs can be directly observed by measuring the proper distance between freely
falling test masses, which can be accomplished with an interferometer.

To see this, consider a simple Michelson interferometer whose arms are aligned with
the x-axis and y-axis of a rectilinear coordinate system. Imagine that the beam splitter
is located at the origin of the coordinate system, and the two mirrors are located at
(x = L,y = 0,z = 0) and (z = 0,y = L,z = 0). We refer to the length of the
interferometer arm aligned with the x-axis as L, and the length of the interferometer
aligned with the y-axis as L,. The end mirrors can be considered to be the test masses
of the previous example, so the change in the proper separation between the end mirror

and the beam splitter along the x-axis is

ALL(t) 1, g, 1
= A ShET () & S (0) (1.1.20)

Likewise, the change in the proper separation between the end mirror and the beam

splitter along the y-axis is

AL?J (t> ~ lhTT

~

L 2yy

() ~ —%h+(t). (1.1.21)

Therefore, the difference in the arm lengths is

ALL<t) _ AL(Y) z AL hy(t). (1.1.22)
The quantity AL/L is called the GW strain.

GWs from astrophysical sources will not be perfectly aligned with an interferome-
ter. Instead, the interferometer will be affected by some linear combination of the plus

and cross polarizations of the GW, which will depend on its sky location and relative

orientation to the instrument. In general, the GW strain is

AL _

7 h(t) = Fi(a, 0,9, t)hy(t;0) + Fy (o, 6,9, t)hy (t; 1), (1.1.23)

where the source’s sky position is given in terms of the right ascension « and declination
0, ¢ is the inclination angle between the separation vector between the GW source and

the detector and a vector perpendicular to the polarization plane, and the polarization
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9

angle 1 is the angle at which the polarization axis is rotated about the separation vector.

F and F are called the antenna patterns.

1.1.4 How GWs are generated

The source for GWs is the matter term on the right-hand side of the linearized Einstein

field equations

Tus + O(R?), (1.1.24)

where the higher-order terms O(h?) had not been previously indicated in Eq. (1.1.10).
The exact field equations can be written in terms of the effective stress-energy tensor 79
which treats the O(h?) terms as additional source terms to the linear perturbation:

167G
A

Ohas = — Top- (1.1.25)

The solution to ks for the exact field equations can be found using a Green’s function,

and the solution is

S 4G/Ta,6(t_|f_f/|/cvf,) B (1.1.26)

ha,@(t7x) - C_4 |f— f’|

This integral simplifies when analyzed in the “far zone”, which is where GW detectors
are located relative to astrophysical sources. The properties of the far zone are that the
size of the source R is much less than the GW wavelength A, which is much less than the
distance to the GW source D. In the far zone and exploiting an identity of the effective

stress energy tensor, Eq. (1.1.26) becomes

_ . 20 ..
where the quadrupole tensor is defined
I;(t) = / z2,7(t, T) d*7. (1.1.28)

In the TT gauge, the far-zone solution for the metric perturbation is

2G .
TT 4\ ~ TT
W) ~ e

ST = Djo). (1.1.29)

Here, the transverse-traceless quadrupole tensor is

1
L;'(t) = Pul"'Py — §Pijpkl[kl, (1.1.30)
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the transverse projection operator is 10

Pij = 0y — finy, (1.1.31)
and the unit vector in the direction of propagation is n; = x;/D.

1.1.5 Energy and angular momentum in GWs

There are two other useful relationships to review: the GW luminosity and the amount

of angular momentum radiated by a gravitating system. The GW stress-energy is given

by
4 [ oni, ot
TeW = ¢ TTZ 0 1.1.32
d 327G < Ox® O0xP > ( )
The GW luminosity can be calculated from this quantity and is
dE 1G /.- =
L= _ 2= <L~~I”> , 1.1.33
dt  5c0 \7Y ( )
where
1
Iij - / (I‘il‘j — §T26ij) Too(t,f)d?)f. (1134)

Note that I;ET = I%TT since the only difference between the two quantities is that Z;; is

traceless. From this, the amount of angular momentum radiated is

dJ;  2G  Jag
= e <Iﬂzf>, (1.1.35)

where
+1 if (i,7,k) is (1,2,3),(3,1,2),0r (2,3,1)

=14 —1 if (i,5,k)is (3,2,1),(1,3,2),0r (2,1,3) - (1.1.36)

0 ifi=ji=korj=k
1.2 A couple astrophysical GW sources

(The entirety of this section closely follows [9].)

For my Ph.D. research, I have considered two types of GW sources: isolated, rotating

NSs and CBCs. In general, the GW strain as measured in an interferometric detector is

ol L) fyl_i.lsl

h:F+h++Fxh><, (121)
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The antenna patterns just depend on the source’s position in the sky and its relative 11

orientation to the detector. This section reviews the form of the two GW polarizations

h, and hy for isolated, rotating NSs and CBC systems.

1.2.1 Isolated rotating NS waveform and frequency evolution

An isolated, rotating NS can be modeled by a rotating ellipsoid. If the ellipsoid is not
axisymmetric, it will emit GWs because its quadrupole will change over time. The far-

zone solution to the linearized Einstein field equations is

2G
hit(t) = E1’5% —DJe). (1.2.2)

The second time derivative of the transverse-traceless quadrupole tensor for an ellipsoid
rotating about the z-axis with rotational frequency v observed at an inclination ¢ is
- (HCT%QL> cos(4mvt) cos tsin(4mvt) 0
IET = 8r’elV? cos ¢ sin(4mvt) <1+CT°SZL> cos(4mvt) 0 |,
0 0 0
where the ellipticity e = (I — I5)/I, I3 = I, and I3, I5, and I3 are the principle axes of

inertia. Therefore, the GW takes the form

_ <—1+C;SQ ‘) cos(4mut) cos ¢ sin(4mvt) 0

1672Gelv? 9
hy' = —ap cos tsin(4mut) (%) cos(4mvt) 0 |,
0 0 0
and the two polarizations are
167°Gelv? 1+ cos?t
hi(t) = — D ( 5 ) cos(4rmvt) (1.2.3)
16m2GelV? _
hy(t) = —ap  Cost sin(4mvt). (1.2.4)

For the work presented in Ch. 2, it is important to note that the GW amplitude for such

systems is
B 16m2Gelv?
- AD

An isolated, rotating NS will continuously slow down due to GW emission. The

h (1.2.5)

amount of angular momentum radiated is

dJ 10247° G
= m —562[2V5.

dt 5 ¢

(1.2.6)
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Since J = [w = 271y, the rotational frequency evolution is 12

1274 GT
2 Gl

1.2.7
R (1.2.7)

v=—

This assumes that the system only radiates angular momentum through GW emission.

1.2.2 CBC waveform

A compact binary coalescence can be modeled by two orbiting point particles (or black
holes) having component masses m; and msy. Again, the quadrupole tensor changes over
time as the bodies orbit one another resulting in GW emission. The far-zone solution to

the linearized Einstein field equations is

2G
hit(t) = @IET(t —DJe). (1.2.8)

The second time derivative of the transverse-traceless quadrupole tensor for a CBC system
is
(HCTOS%) cos 2¢ cos ¢ sin 2¢ 0
IET = —2u0’ cos ¢ sin 2¢ — (HCTOS%) cos2¢ 0 |,
0 0 0
where p = mimg/M, M = my + my, v = (TMG fgu)"/3, faw is the GW frequency, and
the orbital phase ¢ = wt = T fout = v3t/(GM). Therefore, the GW takes the form

. (HT) cos(26(v))  cosusin(2p(v)) 0
h;l;_T — _cz_g <%) cos tsin(2¢(v)) - (HCTOS%) cos(2¢(v)) 0 | (1.2.9)
0 0 0

and the functional form for the system’s energy and luminosity can be used to solve for

¢(v) and v in term of ¢.

Newtonian chirp waveform

In the Newtonian limit of GW, the energy and luminosity of a CBC system are

1 A

B(v) = —5¢'Mn (E> (1.2.10)
32¢5 5 fu\10

= 5 (0) (12.11)

ol L) fyl_i.lsl
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where n = u/M. Since the luminosity is the amount of energy lost over time, L = —dFE/dt. 13

Therefore, using this relationship and the chain rule,

dt dtdE _ E'

=== (1.2.12)

where the prime indicates a derivative with respect to v. Additionally, since ¢ = wt =

vt/ (GM),

dp dodt v® F
ap _doat v B 1.2.13
dv  dt dv GM L ( )
Integrating Eqs. (1.2.12) and (1.2.13) to some reference v, vyef, gives
Uref E’<u>
to= t du, 1.2.14
| R

B Uref U3 E/(u)
Qb - ¢ref+/v G_ML(U,) du. (1215)

The binary loses energy to gravitational waves as its components orbit. The result is that

the orbit continually tightens and the orbital speed continually increases until the bodies

eventually coalesce. Using Egs. (1.2.10) and (1.2.11) in Egs. (1.2.14) and (1.2.15) and

[APhi

solving for ¢(v) and ¢(v) where coalescence “c” is chosen for the reference “ref” gives

5 GM -8
IR
o(v) = ¢ — 320 <E> : (1.2.17)

Inverting Eq. (1.2.16) to find v(t), substituting this into Eq. (1.2.17) to find ¢(t) = ¢(v(t)),
and putting v(t) and ¢(t) into Eq. (1.2.9) gives the GW perturbation as a function of

time. The two polarizations are

 GM [E(te—1) V1 4 cos?y At —)]®
 GM [t -] , At —1)1"*
he(t) = — 2D { =M } cost sin | 2¢. — 2 {W} . (1.2.19)

where ¢t < t.. This is referred to as a “chirp” waveform because its frequency and
amplitude both increase with time. If the wave properties were converted to sound,
it would chirp. The Newtonian chirp only depends on mass through the parameter

M = 3> M, which is referred to as the chirp mass.
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The GW strain seen in an interferometric detector from a CBC signal in the Newtonian 14

limit is given by Egs. (1.2.1), (1.2.18), and (1.2.19). It is convenient to express h(t) in
terms of the time and phase at which the signal terminates in the detector instead of the

coalescence time and phase. To do this, realize that
h(t +to) = Fi(a, 6,9, t +to)hi(t + 1) + Fx(a, 0,1, + to)hy (t + to), (1.2.20)

where t; is the termination time. For a Newtonian chirp, this can be compactly written

in the following way:

ny — - OM [c3<to — t)} B (2 P [CS(tO _ t)r“) | (12.21)

Dy | 5GM 5GM
where
F 2cost
%0 = 2b. — arctan X0 1.2.22
%o ¢c — arctan <F+ 1 + cos? L) ( )
—1/2
1 2,\?
D = D |F? (%) + F2 cos? L] ) (1.2.23)

t < tog, and Fy y = F\ ;(«a,6,1,t). Here, ¢ is the phase at termination. The effective
distance D.g is a distance parameter that takes into account the relative orientations of
the binary and detector. If the binary and detector are optimally oriented, Deg = D,
otherwise D > D.

The CBC waveform is often written in the frequency domain. The Fourier transform

of the Newtonian chirp waveform under the stationary phase approximation is

. 51 G2M? [ MG fon ]/ ,
h(few) = \/gcf)Deﬂr [W 3 Js ] exp [— i (faw)] (1.2.24)

where

r 3 |:7TMGfgW} —5/3

U(faw) = 27 fawte — 26 — 7 + —=

1t 13 (1.2.25)

3

The Fourier transform conventions used here and in the rest of this dissertation are

#(f) :./mﬂwa%mﬁ (1.2.26)
z(t) = /m£Uk%Wﬁ. (1.2.27)

SR fyl_i.lsl
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1.2.3 Post-Newtonian chirp waveform 15

Egs. (1.2.24)-(1.2.25) and (1.2.21)—(1.2.23) model the inspiral portion of the CBC wave-
form in the time domain (TD) and the frequency domain (FD) at Newtonian order.
However, the systems ground-based interferometers are most sensitive to will be relativis-
tic and strongly gravitating. Post-Newtonian (PN) theory adds relativistic corrections
to the Newtonian results presented in Sec. 1.2.2. The GR equations of motion are ex-
panded in orders of the characteristic speed of the system. The CBC waveform becomes
more accurate at high frequencies by adding more PN correction terms to the Newtonian
waveform.

PN corrections to the CBC energy and luminosity functions have been calculated to

3.5PN order [10]:

E(z) = —%CQMH.T {1 — <Z + %77) x
— (66—15 — <% — % 2) + %nQ + %n‘”’) xﬂ (1.2.28)
L(z) = 3—526—;772x5 [1 — (%467 + %T}) z + 4nxd/?

WTIL 9271 65 5\, (8191 583 52
- — - - xrx" — | —— —_— T™r
9072~ 504 1 18" 672 24

6643739519 16 , 1712 856
( 69854400 T 3" 105 105 (167
41 , 134543 04403 , 775 4\
+(EW ~ 776 )77_ 3024 —32477)95

- (16285 214745 193385 2) Wm?/?} (1.2.29)

504 1728 17 3024 "

Here, the PN order corresponds to the highest power of the PN expansion parameter
r = (TMG fg/c®)? in the square brackets (i.e. beyond leading Newtonian order) and
v = 0.5772156649. .. is the Euler constant.

The PN expansion of the energy and luminosity are used as inputs for finding the
form of the PN CBC waveform, much like was done in Sec. 1.2.2. As will be shown in
Sec. 4.A this can be done in several ways.

PN waveforms are a good approximation to the inspiral portion of the complete CBC
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waveform at low frequencies (early inspiral) and become less reliable near merger. They 16

are commonly used to model BNS waveforms, which have very long inspiral portions and
typically merge out-of-band, meaning at frequencies so high that shot noise dominates
over signal (see Sec. 1.3). However, PN models are not effective at modeling BBH and
IMBHB systems where merger happens in-band and therefore the merger and ringdown
portion of the waveform become much more important. For these systems, effective-one-

body waveforms calibrated to NR simulations are typically used instead [11].

1.2.4 Effective-one-body CBC waveform

Effective-one-body (EOB) waveforms are found by joining an inspiral waveform to a
merger-ringdown waveform. The two-body CBC problem is first cast into an effective-
one-body problem, much like what is done in classical mechanics. A PN resummed
Hamiltonian is used to find the orbital evolution of the inspiral portion of the waveform
[12]. The later stages of the inspiral right before merger can be adjusted to more closely
match NR simulations by adding pseudo 4PN and pseudo 5PN coefficients and calibrating
their values so that the waveform matches these simulations. EOB waveforms calibrated
in this way are called EOBNR waveforms. A superposition of BH quasi-normal modes
are used to construct the merger-ringdown waveform. The inspiral and merger-ringdown
waveforms are then joined near the time at which the EOB orbital frequency is at a
maximum [11].

EOBNR waveforms describe all three phases of a CBC signal and match high-accuracy
NR simulations. However, they are relatively expensive to compute compared to the
Taylor-expanded PN waveforms. Typically, Taylor-expanded PN waveforms are used to

model BNSs and EOBNR waveforms are used to model BBH waveforms.

1.3 Dominant LIGO noise components

The entirety of this dissertation is geared toward searching for GWs in LIGO-VIRGO data
and estimating source parameters or source population parameters given detection. To
do this, GW signal models are compared to the data to check how well the models match

the data, essentially comparing how much signal is in the noise. Therefore, it is important
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to understand and incorporate the general characteristics of the detector noise, and we
do this through the power spectral density (PSD) and the amplitude spectral density
(ASD).

The one-sided power spectral density S of a detector is defined by

S5O0 — 1) = (3 (F)a(F)), (131)

where the (...) is an ensemble average over noise realizations. The ASD is the square
root of the PSD. Fig. 2 plots sample ASDs from initial and enhanced LIGO and the
design ASD for aLIGO.

10~ :
— {iLIGO ASD
2 —  eLIGO ASD
102 |
— aLIGO ASD

Figure 2 : The ASD for iLIGO and eLIGO, and the anticipated design ASD for aLIGO.

The distinct shape of the ASD is mainly the result of the following three dominant

noise components, from which all ground-based interferometric detectors suffer.

1. Seismic noise: Seismic noise refers to Earth-based activity that vibrates an in-
terferometer’s end mirrors resulting in detector noise. Seismic vibrations typically
manifest at low frequencies (up to tens of Hertz) and cause the steep low-frequency
wall in the ASD. Examples of seismic activity known to affect the LIGO instruments
include earthquakes, nearby traffic, airplanes, logging, and tumbleweed, but LIGO

is mostly affected by microseismic activity. Great effort has been taken to isolate
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the end mirrors in order to reduce seismic noise through an intricate pendulum 18

system. Using a pendulum system introduces noise at the harmonic frequencies of
the suspension wires. However, these noise spikes, which are clearly visible in the

ASD, are extremely narrow and well-understood.

2. Thermal noise: The Brownian motion of particles in the suspension wires and in
the end mirror coatings changes the effective arm length of the instrument. Since the
amount of motion depends on temperature, this is called thermal noise. Thermal
noise is dominant in the mid-frequency range from tens of Hertz to hundreds of
Hertz. High-quality mirrors and suspension wires are used to minimize this noise

source.

3. Shot noise: The interferometer measures changes in the light detected at a pho-
todiode due to changes in the length of the interferometer arms. A photodiode
essentially counts the number of photons hitting it over time, which is a Poisson
process. Since it is a Poisson process, there is noise associated with this counting
process, and this noise is called shot noise. Shot noise dominates at high frequencies
(above roughly 100 Hz). A technique referred to as squeezing light can reduce the

effects shot noise.

ol L) fyl_i.lsl
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Chapter 2

Continuous Gravitational Waves
from Isolated Galactic Neutron

Stars in the Advanced Detector Eral

2.1 Background and motivation

Isolated neutron stars with non-axisymmetric deformations will continuously emit gravi-
tational waves as they rotate [14]. Neutron stars also have strong dipolar magnetic fields
that accelerate particles to relativistic energies [15]. Since these neutron stars can lose en-
ergy through the emission of electromagnetic and gravitational radiation, their rotational
frequency slowly decreases over time. The gravitational wave strain amplitude of rotat-
ing neutron stars has a strong dependence on the star’s rotational frequency. Though
no gravitational wave detection has yet been reported, rapidly rotating isolated Galactic
neutron stars are one of the most promising sources of continuous gravitational waves for
ground based gravitational wave detectors.

Attempts to assess the detectability of gravitational waves from the Galactic neutron
star population began with rough analytic estimates. An argument presented in Ref. [16]
by Thorne but credited to Blandford models the Galactic neutron star population as a

uniformly populated two-dimensional disk of gravitars (neutron stars with gravitationally

!This chapter was published in Ref. [13]
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dominated frequency evolutions) all born at very high frequencies. Using this simplis- 20

tic model, he estimated a rough upper bound on the possible gravitational wave strain
amplitude from a Galactic neutron star, hyax ~ 1072 [16]. Blandford also surprisingly
observed that the maximum gravitational wave amplitude is independent of the size of
the star’s deformation and rotational frequency. His argument was revised in Ref. [17]
and again in Ref. [18], which both found A, ~ 10724

This work was followed by more comprehensive attempts to assess the detectability
of the Galactic neutron star population through population synthesis. If the neutron
star population can be accurately simulated, then the detectability of Galactic neutron
stars can be determined. In Ref. [19] Palomba was the first to assess the detectability of a
simulated gravitar population by first and second generation gravitational wave detectors.
He incorporated realistic spatial, age, birth frequency, and kick velocity distributions, as
well as a possible ellipticity distribution (though this is still largely unconstrained [19]).
He estimated the fraction of the neutron star population that would likely have to be
gravitars in order for first or second generation detectors to make a direct gravitational
wave detection. Continued efforts by Knispel and Allen extended Blandford’s argument to
a simulated gravitar population similar to Palomba’s [18]. They found that the maximum
gravitational wave strain amplitude does have a strong dependence on the star’s frequency
and size of deformation when considering a more realistic neutron star population. They
set upper bounds, which depend on the population’s ellipticity (a measure of a star’s
deformation) and rotational frequency, on the gravitational wave strain amplitude of the
nearest source.

In this chapter, we include electromagnetic emission as well as gravitational wave
emission in the frequency evolution of neutron stars and investigate its effect on the
population’s detectability. We use the simulated neutron star population in Ref. [1§]
and assign every neutron star a dipolar magnetic field as well as an ellipticity. We
then allow each star’s frequency to evolve through the emission of both gravitational
and electromagnetic radiation. The chapter is organized as follows. In Section 2.2 we
review the spin and strain evolution of neutron stars and revisit the upper bounds from

the gravitar case. In Section 2.3 we outline a Monte Carlo simulation used to assess
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the detectability of the Galactic neutron star population. The results are then used to 21

bound the magnetic field strength and ellipticity parameter space of isolated neutron
stars with or without a direct gravitational wave detection. In Section 2.4 we present a
rough analytic argument to which we compare our numerical results. In Section 2.5 we

summarize our main results.

2.2 Spin and strain evolution of neutron stars

We use the simulated neutron star population from Ref. [18] to assess the detectability
of gravitational waves emitted by isolated Galactic neutron stars. It is important to note
that, while the simulated population does not explicitly include recycled millisecond pul-
sars, it does not necessarily exclude them either. Each star in our population is assigned
a birth frequency, initial position, kick velocity, and age. Stars are then independently
evolved through the Galaxy’s gravitational potential (see Ref. [18] for a more detailed
description of the population). Therefore an old star that has been recently recycled can
just be thought of as a young star born with a high frequency. We also consider a large
enough range in magnetic field strength to accommodate recycled pulsars. In this section,
we review methods to find the spin frequency and gravitational wave strain amplitude of
each star in our simulated population in order to assess its detectability.

If neutron stars only lose energy through gravitational and electromagnetic emission,

their rotational frequency evolution is given by

5127t GI 8r? RO ,
7 ?621/5 - ?EB2 sin® o 1?, (2.2.1)

V= —

in Gaussian units [18; 20; 21]. Here, GG is the gravitational constant, ¢ is the speed
of light, v is the star’s rotational frequency, R is the star’s radius, I = kM R? is the
moment of inertia about its rotational axis with M being the star’s mass and k ~ 2/5
[15], € = (I; —I5)/1 is the ellipticity with I; and 5 being the moments of inertia about the
star’s other two principle axes, B is the dipolar magnetic field strength at the magnetic

equator, and « is the angle between its magnetic pole and its axis of rotation?. We choose

2The second term in Eq. (2.2.1), which is the frequency evolution due to electromagnetic emission, is

derived from the simple model of a rotating dipole. In Ref. [22] Spitkovsky corrects this term such that a

www.manaraa.com



the canonical values of R = 10 km and M = 1.4M,, for all neutron stars [15]. Because 22
we only concern ourselves with order of magnitude estimates, we set sin®a = 1.
Eq. (2.2.1) can be solved analytically for v(t, 1) in the limits where ¢ = 0 or B = 0.

If B =0, a neutron star will only emit gravitationally. Its frequency is

v(t,vg) = (V0_4 — 47gwt)71/4 , (2.2.2)

where t is the neutron star’s age, vy = v(t = 0) is the neutron star’s birth frequency,
and g = —5127*GIc™%¢?/5. Eq. (2.2.2) is a good approximation for the frequency of
a gravitar. The characteristic timescale (the approximate time for a neutron star with

birth frequency vy > v to spin down to a frequency v) for gravitationally dominated

10-7\* /100 Hz\ *
Tgw:_ﬁzzgo Myrs( - ) < Z) . (2.2.3)

14

emission 1s

If e =0, a neutron star will only emit electromagnetically. Its frequency is
_ —1/2
v(t,vg) = (% — 27aipt) / , (2.2.4)

where Vg, = —8m2RSc 317 1B%sin’ /3. Eq. (2.2.4) is a good approximation for the
frequency of a neutron star whose evolution is dominated by electromagnetic emission
and whose characteristic timescale is

102 G\ ? /100 Hz ) ?
Taip = —% ~ 1,600 yrs< . ) ( Z> . (2.2.5)

v

While € is unknown, the dramatically different timescales between Eqs. (2.2.3) and (2.2.5)
illustrate the difficultly in detecting isolated neutron stars: stars with reasonable magnetic
fields spin down to low frequencies too rapidly to detect. Therefore, gravitational wave
detectors will likely only detect neutron stars with small magnetic fields or young neutron
stars that have not yet spun down to low frequencies.

Not all neutron stars will have their frequency evolution dominated by either gravita-
tional or electromagnetic emission. For these stars,  cannot be integrated over time to
solve for an analytic solution for v(¢,1yle, B). However, Ref. [18] shows that Eq. (2.2.1)

can instead be inverted to solve for ¢(v, vy|¢, B). Following Ref. [18], we rewrite Eq. (2.2.1)

neutron star will still emit electromagnetically even if its magnetic pole and rotational axis are aligned.
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as 23

Vo= Yewl” + Yaipl” (2.2.6)

= Ydip (’W5 + Vg) ; (2.2.7)

where 7 = Ygw /Vdip- Eq. (2.2.7) can be solved for

Hw, v) = — {””2 LA (”—2 (M»} . (2.2.8)

vanl | 6772 W \T+v%

If vy, t, Yew, and g, are known, Eq. (2.2.8) can be solved numerically to find v using
root finding techniques [23].
The strain amplitude of gravitational waves emitted by a neutron star at a radial

distance r away from a detector is given by

GI a1
ho= 16%2?% (2.2.9)
2 (1 kpe
~ 4 10—25< ¢ )( v ) 2.2.10
x 107/ \100 Hz ) (2.2.10)

assuming that the neutron star’s sky location intersects a line normal to the plane of the
detector arms and its axis of rotation is parallel to that line (optimal mutual orientation).
Since we only concern ourselves with order of magnitude estimates, we assume optimal
mutual orientation for all neutron stars [18], which overestimates the detectable amplitude
by about a factor of four on average.

For a population of neutron stars whose radial distance from Earth r, age ¢, birth
frequency vy, ellipticity €, and magnetic field strength B are known, Eq. (2.2.2), (2.2.4),
or (2.2.8) can be used to determine each star’s spin frequency v. Eq. (2.2.2) is used when
Yewl® > Yaip, which we conservatively choose to be when v > 40 % Eq. (2.2.4) is
used when 7y /° < vaipr?, which we conservatively choose to be when v < 4 x 1079 %
Eq. (2.2.8) is used otherwise®. Eq. (2.2.9) can further be used to determine each star’s
gravitational wave strain amplitude h as measured in our detector. We compare each

star’s frequency and strain amplitude to a scaled gravitational wave detector’s noise curve

3To determine the two 7 cutoffs, we assume that one term will dominate over the other if it is at least
three orders of magnitude greater than the other. Eq. (2.2.2) can be used when v > 1/v2. Therefore, we
choose v > 103 /12 = 40 s? for v = 5 Hz. Eq. (2.2.4) can be used when v < 1/v2. Therefore, we choose
v <1073 /v? =4 x 1072 §? for v = 500 Hz.
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in order to assess the detectability of the neutron star population. We explain how we 24

derive the scaling factor in Section 2.3.

While Eq. (2.2.9) for the gravitational wave strain amplitude h does not depend
explicitly on the magnetic field, B does help to determine v through Eq. (2.2.1). There
are two related effects. First, Figure 3 shows that, all other things being equal, neutron
stars with large magnetic fields will spin down to low frequencies (high periods) much
faster than neutron stars with small magnetic fields. Consequently, large magnetic fields
will result in smaller and smaller gravitational wave amplitudes over time. Second, since
gravitational wave detectors are sensitive to finite frequency ranges, neutron stars with
large magnetic fields will rapidly spin through a detector’s sensitive frequencies, which
makes them less likely to be detected. Therefore, neutron stars with small magnetic fields
are more likely to be detected than neutron stars with large magnetic fields. In this way,
assuming we know the population’s ellipticity, we can place lower bounds on the magnetic
field of neutron stars in the absence of a gravitational wave detection.

We can gain intuition into the detectability of Galactic neutron stars by setting B = 0.
This places an upper bound on h for fixed € values. In Figure 4, we plotted the maximum
gravitational wave strain amplitude hy., versus gravitational wave frequency f = 2v of
the simulated neutron star population presented in Ref. [18] with B = 0 and ¢ = 1077,
1078, 1077, and 107%. A single point (f, Amax) corresponds to the population’s maximum
gravitational wave amplitude hp,, measured in the frequency band [f,ef] where e is
Euler’s number.*

Our numerical result in Figure 4 is consistent with the result in Ref. [18], which
was derived using a semi-analytical integration technique. Considering a distribution
in frequency and a three-dimensional spatial distribution results in a clear dependence
of hmax on both frequency and ellipticity [18]. The effect of the frequency distribution
manifests itself in the overall shape of the four curves in Figure 4. Since stars with

large ellipticities spin down much faster than stars with small ellipticities (Eq. (2.2.3)),

4To find hmay, we considered 200 logarithmically spaced overlapping frequency bands and constructed
histograms for the strain amplitude from the neutron stars in each band. We then solved for hy,.x using a
linear fit in log;g-space to the tail (largest h values) of each histogram. We used this method to minimize

statistical fluctuations.
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Figure 3 : This figure shows the period evolution of neutron stars. The dots represent observed pulsars
from the ATNF catalog [24]. The thin, negatively sloped solid contours are lines of constant magnetic
field strength (labels on the left), and the thin, positively sloped dotted contours are lines of constant
characteristic age (labels on the right) assuming only electromagnetic emission. The thick, solid lines
with square ticks track the period evolution of a neutron star that emits both electromagnetic and
gravitational radiation. These lines, which are labelled by the logarithm of the star’s magnetic field
in units of Gauss, correspond to a neutron star with ¢ = 10=7 (all lines) and B = 108 — 10! with
steps of 1/2 dex. The square ticks represent logarithmic steps in age. The leftmost tick labels ¢t = 0,
and the subsequent ticks range from ¢t = 10* — 10° yrs. The thick, dashed lines, which are labelled by
the logarithm of the star’s magnetic field in units of Gauss, are characteristic aLIGO sensitivity curves
for neutron stars with e = 10~7 located 100 pc away from Earth. Neutron stars below their associated
aLIGO sensitivity curve are undetectable. Neutron stars with large magnetic fields spin down to low
frequencies (high periods) much faster than stars with small magnetic fields; consequently, they spend
less of their lives emitting gravitational waves with frequencies that aLIGO is most likely to detect.

a neutron star population with large ellipticities more densely populates low frequency
bands than a neutron star population with small ellipticities. Therefore, while each curve
in Figure 4 has a similar shape, the large ellipticity curves are shifted to the left relative
to the small ellipticity curves. The subtle kink in the € = 107 and 10~® curves between
the nearly flat, high frequency region and the more positively sloped, low frequency
region corresponds to a kink in the population’s frequency distribution, which is described

in Ref. [18].> The ¢ = 1077 and 1075 curves also exhibit the same behavior but at

5Since we consider a continuous distribution in birth frequency, and a single star cannot be older than

the Galaxy, neutron stars with high birth frequencies will not have existed long enough to have spun
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Figure 4 : We plot the maximum gravitational wave strain amplitudes hp.x as a function of gravitational
wave frequency f = 2v of a population of gravitars (neutron stars with B = 0) with e = 1072, 1078,
1077, and 107%. A single point (f, hmax) corresponds to the population’s maximum gravitational wave
amplitude hpyax measured in the frequency band [f,ef]. We used the gamma initial radial distribution
from Ref. [18] to simulate the neutron star population.

smaller frequencies than those plotted. If we had considered a two-dimensional spatial
distribution, h.« would have been independent of the ellipticity in the region to the right
of the kink. Here, the frequency distribution is in a nearly steady state. Considering
a three-dimensional spatial distribution breaks this degeneracy between hp., and the
population’s ellipticity. Note that the gravitational wave strain amplitude will decrease

when magnetic fields are considered.

2.3 Neutron-star detectability and constraints

To assess the detectability of the Galactic neutron star population, we use the methods
outlined in Section 2.2 to find the spin frequency v and gravitational wave strain ampli-
tude h of every neutron star in our simulated population. The population used in our

analysis is described in detail in Ref. [18]. Although [18] presents three different initial

down past a certain frequency. Neutron stars will accumulate near this frequency causing a kink in the

population’s frequency distribution, as seen in Ref. [18].
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radial distributions, we choose to present our results using just the “gamma initial radial 27
distribution”. We expect minimal deviation in our results if we were to consider the other
two distributions presented in Ref. [18]. The code that creates our simulated population
provides the final position, which is easily turned into a distance from Earth r, and age
t of each neutron star. Since a star’s magnetic field strength B and ellipticity e dictate
its frequency evolution, we must also choose what values of each to assign to the stars
in our population. We fix € and B to a single value so that every neutron star in our
population has the same e-B combination. While this approach will not mimic a realis-
tic neutron star population, it is an important first step that provides valuable intuition
for considering a more realistic population in the future. Lastly, we assign each star a
birth frequency vy = 1/Fy, where P, is randomly drawn from the lognormal birth period
distribution in Ref. [18]:

~ L (mP - R

1
pro(Fo) = N el
0

Here, Py > 0.5 ms is the birth period, Py = 5 ms is the mean, and ¢ = 0.69 is the
standard deviation. Given r, t, vy, €, and B, we can use the methods outlined in Section
2.2 to find v(t,ple, B) and h(r,v|e) for every neutron star in our simulated population.

Once v and h are found for every neutron star, we can determine whether or not
we expect a gravitational wave detector to detect our population. For simplicity, we
only consider detection by a single Advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) detector. We use the aLIGO noise curve for a single detector from
Ref. [25], which is the expected sensitivity of aLIGO as a function of gravitational wave
frequency. To estimate the strain, we assume that we have a year of aLIGO data, and
that the data is analyzed coherently in short 72 hr stretches, with the short stretches
combined incoherently. This assumes the LIGO Scientific Collaboration will be doing
similar searches to the ones currently done by Einstein@Home [26] in the aLIGO era. An
overall trials factor of 100 is applied, which is considered a conservative estimate. We
then compare each neutron star to the estimated noise curve to determine the number
of neutron stars in our population that aLIGO will be able to detect. We assume that a

neutron star will be detected if its strain is above the aLIGO noise curve. To assess the
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Figure 5 : Contours of log;, n (described in Section 2.3) with respect to (log,q B,log;, €), which illustrate
the expected detectability of the neutron star population with various € and B combinations. Our analysis
was performed on populations with logarithmic spacings of 1/8 dex in € and B. The dashed lines are the
analytic approximations for log;,n described in Section 2.4. We plot three results: log;,n = -7, -8, =9,
respectively from left to right. The dotted lines show the boundaries that separate where the analytic
argument’s assumptions are valid from where they are not (Section 2.4). They only hold for detectable
neutron stars that are young (tmax S 10 Myrs), found above the horizontal dotted line, and dominated

~

by electromagnetic emission (7aip < Tew), found to the right of the positively sloped dotted line.

detectability of the neutron star population, we construct the fraction

o Ndet

2.3.1
Nsim, ( )

n

where N, is the number of stars in the simulated population, and Ny is the number
of stars aLIGO can detect from this population. To reduce statistical fluctuations, we
simulate many more neutron stars than are actually expected to be in our Galaxy. Multi-
plying this fraction n by the number of neutron stars in our Galaxy Ng, gives the number
of detectable neutron stars in our Galaxy. If n - Ny, is greater than or equal to one, the
population will likely be detectable; if it is less than one, the population will likely be
undetectable. In Figure 5, we plot contours of log,,n with respect to (log,, B, log,€),
illustrating the expected detectability of the neutron star population with various € and
B combinations.

We can further use our results (Figure 5) to place bounds on the e-B parameter
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space of the Galactic neutron star population. In Figure 5, the contour corresponding to 29

N+ Nga = 1 is the boundary above which the e-B parameter space is disallowed, assuming
(pessimistically) no al.IGO detection of continuous gravitational waves associated with a
Galactic neutron star. In this way, Figure 5 sets lower bounds on B for fixed € values (or
upper bounds on ¢ for fixed B values) if aLIGO does not make an isolated neutron star
detection. For instance if Ny ~ 10° [19], and we assume neutron stars have a typical
ellipticity of € ~ 1077 [19], Figure 5 shows that the minimum magnetic field strength of
Galactic neutron stars is B 2 10'* G in the absence of an al.IGO detection. Conversely
if Nga ~ 10, and we assume neutron stars have a typical magnetic field strength of
B ~ 10" G, Figure 5 shows that the population’s maximum ellipticity is € < 10~7 in the
absence of an aLLIGO detection. This argument also applies if aLIGO does make isolated
neutron star detections. If N, ~ 10°, and we assume neutron stars have e ~ 1077, then
the minimum magnetic field strength of Galactic neutron stars is B > 10'° G if aLIGO
detects 10 neutron stars. Conversely if Ng, ~ 10°, and we assume neutron stars have
B ~ 10 G, then the population’s maximum ellipticity is ¢ < 1077 if aLIGO detects 10

neutron stars.

2.4 Analytic results

In all previous sections, we used numerical methods to assess the detectability of Galactic
neutron stars and place constraints on the properties of the Galactic neutron star popu-
lation. In this section, we present an analytical approach to setting bounds on the e-B
parameter space of the Galactic neutron star population. Blandford’s analytic argument
considers neutron stars that emit only gravitationally. Our analytic argument, while still
simplistic, applies to stars dominated by electromagnetic emission.

We first use the aLIGO sensitivity curve described in Section 2.3 to constrain the
volume around Earth in which detectable neutron stars must be contained. If a neutron
star is detected, it will tend to be at or near the detector’s most sensitive frequency,
which we call vge. For simplicity, we assume that a neutron star must have v ~ v4q to
be detected. Therefore, a neutron star will be detected by a ground-based gravitational

wave detector if h(vger) > hger, Where hge is the value of the strain amplitude for which
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Figure 6 : The top plot is a typical sensitivity curve of a ground-based gravitational wave detector. We
assume that isolated neutron stars with h(vget) > hdet will be detected. Below are diagrams of the Milky
Way disk. The black dot is Earth’s location within the Milky Way disk. The two volumes Vj,.x outlined
by dotted lines are the maximum volumes within which detectable neutron stars can be contained. Vi,ax
will be the volume of a sphere if 7. < Hyw (top diagram), and Viyax will be the volume of a spherical
segment if ryax > Hyvw (bottom diagram). See Section 2.4.

the detector is most sensitive (see Figure 6). This detectability condition, along with
Eq. (2.2.9), translates into a constraint on the distance from Earth of detectable neutron
stars. The maximum distance 7, at which a neutron star with v = g, could be

detected is:
GI eV,

. 2.4.1
ct hdet ( )

2
Tmax = 10T

The detectability condition also translates into a constraint on the volume that en-
closes detectable neutron stars. First, we assume that neutron stars are born uniformly
throughout the Galactic stellar disk at a constant rate N, which is the number of births
per unit time. The volume of the Milky Way, which we approximate to be a disk, is
roughly

Varw = TRy (2Huw), (2.4.2)

where Ryw is the radius of the Galactic disk, and Hynw is half its height (Figure 6). The

volume contained in r,,, Will be a sphere for ., < Hyw. However, for 7., > Hyw, the
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volume contained within r,,, will be a sphere with its top and bottom caps truncated by 31

the top and bottom surfaces of the Milky Way disk, as illustrated in Figure 6. This shape
is called a spherical segment. Therefore, the maximum volume V., in which neutron

stars with v = vy could be detected is:

dorp3 Tmax < Hyvw

3/ 'max
Vmax =

2 2 2
§7THMW (3rmax - HMW) Tmax > HMW

(2.4.3)

From the constraint on the volume that encloses detectable neutron stars of frequency
UV = Vget, We can find the minimum allowed magnetic field strength in the absence of an
isolated neutron star detection. Remembering our constant birth rate assumption, the

average time t.,., between neutron star births into the volume V., is

b = AL = MW o1 (2.4.4)

e Vm ax

assuming a uniform spatial distribution. In order to ensure a neutron star detection, at
least one star within the volume V,,,x must have v > vy, at all times. This will be the
case if V(tmax) > Vaes, because a neutron star spinning down below vq4e will always be
accompanied by a new star being born into the volume V... Likewise, we also assume
that, on average, when a detectable neutron star escapes Vi.x due to its motion in the
Galaxy, another detectable neutron star will enter V... Assuming that a neutron star’s
frequency evolution is dominated by dipolar emission, we solve for the minimum magnetic
field strength B, below which a neutron star detection is not guaranteed by substituting

tmax into Eq. (2.2.4) and solving for B:

B stll)igere Tmax < H MW
Bmin<€7 hdet7 Vdet) = soh.se 5 (245)
anliin~ & Tmax > HMW
where
2.2 2.3/2
Bsphere 32m Vdetj € / WG3N (V2 o 1/2 )
i 0 det
" wRhE ) Vaw ¢
1/2
BSp_h.Seg. _ CHMW \/CINHMW (]/2 B ]/2 ) 7687T4G212€21/§et 1 /
i 2R3y Vg6t 2 Virw - O det AShA Hiw '

Neutron stars with B > B, in Vi will spin down to v < rge before another star

is born_into V... Therefore, in the absence of an aLIGO detection, B = By, is the
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minimum possible magnetic field strength of Galactic neutron stars with fixed ellipticity 32

values, since B < By, ensures a detection.

Our argument is easily extended to the case of Ny neutron star detections. To do
this, we solve for when v(Ngtnax) > Vaet- The result adds a factor of N; Y2 in front of
Eq. (2.4.5).

We have made several assumptions in setting up our analytical argument. It is im-
portant to emphasize two of our argument’s most crucial assumptions in order to clearly
outline the physical systems for which our argument holds. The first crucial assumption is
that the spatial distribution of neutron stars in the Milky Way is a uniform cylinder. Neu-
tron stars will diffuse out of the Galactic disk due to Galactic acceleration and their kick
velocities. The timescale for this process is found by dividing the average kick velocity in
Ref. [18] by the gravitational acceleration (found by dividing the gravitational potential in
Ref. [18] by the length scale). Therefore, our argument holds when #,,., < 10 Myrs. The
second crucial assumption is that the frequency evolution of neutron stars is dominated
by dipolar emission. Therefore, for vy > v, our argument holds when 74, < Tovw-

In Figure 5, we have plotted the relationship in Eq. (2.4.5) (with the factor of NV
front) as dashed lines on top of our numerical results. We use vqe; &~ 100 Hz and hgey &
6.0 x 10726, which approximately corresponds to aLIGO’s most sensitivity strain and
associated frequency, and Ryw = 15 kpc, Hyw &~ 75 pc, and vy = 850 Hz, where Ryw,
Huw, and 1y are estimated averages of the spatial and period distributions in Ref. [18]
found by reducing the maximum values by a factor of e=. We also use N ~ 0.02 years™!
[27]. Our numerical results should roughly follow these dashed lines, which correspond
ton = 1077,1078,107°, respectively from left to right. The analytic results only hold
for detectable neutron stars that are young (tm.x < 10 Myrs), which corresponds to
the region above the horizontal dotted line, and dominated by electromagnetic emission
(Taip S Taw), Which corresponds to the region to the right of the positively sloped dotted
line. There is good agreement between our numerical and analytic results, except in the
transition region near the dotted boundaries where the analytic assumptions start to lose
their validity. While the rough numerical values chosen for the parameters in our analytic

argument can change the overall normalization of the analytic curves, the shape of the
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Figure 7 : Extends our analytic argument to any gravitational wave detector. Eq. (2.4.5) is plotted as
solid contours of log,, B with respect to (log;( hdet,l0g1g €), where B is in units of Gauss. The dashed
and dotted lines show the boundaries that separate where our analytic argument’s assumptions are valid
from where they are not. Our argument does not hold in the gray, shaded regions; our argument does
hold for neutron stars that are young (tmax < 10 Myrs), found below the dotted line (tmax = 10 Myrs),
and dominated by electromagnetic emission (7qip S Tgw), found below the dashed line (7qip = Tow)-

curves closely match the shape of the numerical contours.

While we only consider detection by aLIGO in our numerical analysis, our analytical
approach easily extends to any gravitational wave detector. Notice that in Eq. (2.4.5)
By is a function of €, hget, and vqe;. Therefore, we fix v4e¢ and plot contours of log,q Buin
with respect to (logy, €,10gyo haet) in Figure 7 to illustrate how our argument extends to
other detectors.

It also seems natural to extend our argument to the gravitar case, in which the fre-
quency evolution of neutron stars is dominated by gravitational emission, by solving
Eq. (2.2.2) for By, under the assumption that 7, < 7aip. However, detectable grav-

~Y

itars can be older than 10 Myrs, thus violating our assumption that tp.. < 10 Myrs.

~Y

Therefore, these methods cannot be applied to the gravitar case.
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2.5 Conclusion 34

We have used the methods described in Section 2.2 to find the gravitational wave ampli-
tude and spin frequency of every neutron star in the simulated population described in
Ref. [18]. This involved allowing for both electromagnetic and gravitational emission in a
neutron star’s frequency evolution (Eq. (2.2.1)). We then solved for each neutron star’s
frequency using either Eq. (2.2.2), (2.2.4), or (2.2.8) and each neutron star’s gravitational
wave strain amplitude using Eq. (2.2.9). We used the simulated population to assess
the detectability of and set bounds on the e-B parameter space of the Galactic neutron
star population. Our results are summarized in Figure 5. Assuming that the Galactic
neutron star population consists of Ngu ~ 10 stars, and assuming aLIGO does not make
a neutron star detection, the contour log;,n = —9 in Figure 5 separates the allowed e-B
parameter space (below the contour) from the disallowed e-B parameter space (above the
contour). In other words, assuming we know the magnetic field strength of the neutron
star population, we can place upper bounds on the population’s ellipticity; or, assuming
we know the ellipticity of the neutron star population, we can place lower bounds on the
population’s magnetic field strength.

In this chapter, we have only considered the simple (and unrealistic) case in which
all neutron stars have the same magnetic field strength and ellipticity. However, we have
demonstrated that both a gravitational wave detection or the lack of a gravitational wave
detection can be used to constrain some of the properties of the Galactic neutron star
population. To make confident quantitative statements regarding the properties of the
Galactic neutron star population, we must construct a more realistic population. Moving
forward, we plan to incorporate magnetic field and ellipticity distributions and evolutions

into our analysis to more closely mimic the Galactic neutron star population [19; 28; 29].
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Chapter 3

Developing a compact binary
coalescence search for
intermediate-mass black-hole

binaries

3.1 DMotivating a CBC search for intermediate-mass black-hole

binaries

In this section, we discuss (i) what an intermediate-mass black hole (IMBH) is, current
observational evidence for their existence, and how one might form, (i7) how IMBHs
might end up in a binary system that coalesces in less than a Hubble time and current
rate estimates for their coalescence within aLIGO’s reach, and (i7i) why we are developing

a CBC search for these systems when we have only used burst searches in the past.

3.1.1 Intermediate-mass black holes

Roughly speaking, we define an IMBH to be a BH with a mass above the upper edge
of the stellar-mass BH mass range, which is a few tens of solar masses, and below the
lower edge of the supermassive BH mass range, which is roughly a hundred thousand

solar masses.
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There is now strong evidence of supermassive BHs in the center of galaxies. Their exis-
tence can be inferred through observations of quasars, which are luminous active galactic
nuclei whose electromagnetic emission is likely produced by accretion onto supermassive
BHs. Additionally, the motion of stars around the center of our Galaxy is consistent with
orbital motion about a supermassive BH with a mass of ~10% M, [30].

Stellar-mass BHs, which are thought to be the remnants of the gravitational collapse of
massive stars, also have strong observational support. Bright X-ray sources in our Galaxy
are thought to be the product of stellar-mass BHs accreting matter from a companion
star. The mass of the X-ray-emitting compact objects can be estimated through radial
velocity measurements of their companions. The compact objects can be conclusively
determined to be BHs if their masses are > 3 Mg, which is too massive to be a NS, and
many such sources have been observed [31].

While there is strong evidence for the existence of stellar-mass BHs and supermas-
sive BHs, observational evidence for the existence of IMBHs is still inconclusive. Ultra-
luminous X-ray sources such as discussed in Ref. [32] might be driven by accretion onto
IMBHs. However, accretion onto stellar-mass BHs cannot be ruled out because beaming
models powered by accretion onto a stellar-mass BH with a jet can also produce ultra-
luminous X-rays [33; 34]. More recently there is increasing evidence that there exists an
IMBH in the galaxy M82. By extrapolating the stellar-mass-BH scaling of quasi-periodic
oscillations in the X-ray emission with BH mass to IMBHs, Ref. [35] finds the mass of the
ultra-luminous X-ray source in M82 to be ~400 M. However, not enough is currently
known about IMBHs to ensure that this extrapolation is valid. Perhaps the most com-
pelling suggestion for IMBHs is the existence of stellar-mass BHs and supermassive BHs.
It seems natural that merging stellar-mass BHs could result in an IMBH, and likewise
merging IMBHs could result in supermassive BHs.

If IMBHs exist, they likely form in one or more of the following ways.

1. Formation through stellar collapse: Hypothetical Population III stars are
early-universe stars with negligible metallicity. These stars could have been massive

enough to leave behind IMBHs after their death. However, it has been suggested
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that stars with masses roughly between 140 Mg and 260 Mg will violently ex- 37

plode in a pair-instability supernova. In this process, the star’s core becomes hot
enough to produce electron-positron pairs. This results in energy and pressure loss,
which leads to a partial collapse followed by accelerated oxygen burning. The star
then explodes leaving behind no remnant. However, for stars in excess of roughly
260 My, pair-instability will not occur, and the likely outcome of a core collapse
is an IMBH. Population III stars are not the only candidates for stellar collapse
into IMBHs. Recently, several stars with masses greater than 150 M and initial
masses as high as ~300 My have been observed in the R136 region of the Large
Magellanic Cloud [36]. This discovery demonstrates that there are conditions in
which very massive stars can be sustained. High-metallicity stars can have stellar
winds capable of removing half or more of their mass. So, if some of these types of
stars have low metallicity and mild stellar winds, they could collapse into IMBHs

37).

. Formation in globular clusters: A globular cluster is a collection of tightly-
bound stars orbiting a galactic core. Because globular clusters are old, the most
massive stars will have had enough time to collapse leaving behind dense and mas-
sive stellar remnants, such as NSs and BHs. These objects will tend to sink to the
center of the cluster and interact with one another. The close proximity of these
massive objects in globular clusters could result in enough encounters to grow a BH

through mergers with or accretion from stars or stellar remnants [2].

. Formation in young stellar clusters: Young stellar clusters might also cultivate
IMBHs. The most massive stars in a young cluster will still be on the main sequence
and will also sink toward the center in a cluster core collapse. The close proximity of
stars with such large cross sections (relative to stellar remnants) will lead to many
collisions. The most massive stars will collide first, growing in size and becoming
even more susceptible to future collisions. Enough collisions will result in a very
massive star that can form an IMBH through gravitational collapse, as described

in the first formation mechanism |[2].
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Assuming the existence of IMBHs as described in Sec. 3.1.1, we will now discuss possible
mechanism for their formation in binaries. Here, we consider mechanisms resulting in

binary coalescence times less than a Hubble time, which allows them to be alLIGO sources.

1. Common envelope phase: Two orbiting IMBHs produced by very massive stars
with separations greater than tens of solar radii will not merge in a Hubble time.
Assuming no interactions with other stars, a common envelope phase is required
to instigate mergers over a shorter timescale. When one of the stars leaves the
main sequence, its envelope can expand and fully engulf the binary system. As the
companion is dragged through the envelope, the binary will tighten and the envelope
can become unbound. The result is a tightened binary including an IMBH. This
process can even occur twice, which results in an even tighter binary with two

IMBHs.

2. Binary single interactions: The coalescence of two orbiting IMBHs produced by
very massive stars with separations greater than tens of solar radii in less than a
Hubble time can also be accomplished dynamically. One such mechanism is through
single interactions. Essentially, nearby passing stars or other compact objects can
increase the binary’s eccentricity causing the coalescence time to decrease. Through
many single interactions, a wide binary can be brought to merge within a Hubble

time.

3. Triple systems: Similarly, a triple system involving an IMBHB and a tertiary ob-
ject can dynamically shrink the coalescence time of the binary. Through the Kozai
mechanism, the tertiary’s inclination will oscillate with the binary’s eccentricity
through many orbits. These Kozai cycles can cause a wide binary to merge on a

much shorter timescale.

Ref. [37] estimated the IMBHB merger rate for aLIGO with these mechanisms in

mind. Using population synthesis, it was shown that IMBHB mergers supported by a

IThis subsection closely follows explanations in Ref. [37]
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common envelope phase can have rates as few as zero per year and as many as 300
600 per year in alLIGO once design sensitivity is achieved. The optimistic rate of 300—
600 events per year ignores the possibility of pair-instability supernovae for Population
I stars, while the pessimistic rate of zero events per year assumes that stars do not
survive the common envelope phase. It is considered most realistic to assume that stars
can survive the common envelope phase but allow for pair-instability supernovae. This
results in a rate of 3-6 events per year. It was also shown via order-of-magnitude estimates
that non-expanding, wide binaries coalescing due to single interactions and/or the Kozai

mechanism result in a rate of roughly 100 IMBHB mergers per year.

3.1.3 Why develop a CBC search for IMBHBSs?

Little is known about IMBHs, and GW observations can provide the first definitive proof
of their existence. IMBHB detections could support the current supermassive BH for-
mation models which designate IMBHs as seeds for these giants, shed light on globular
cluster dynamics, test GR in the strong-field regime, and constrain the pair-instability
supernova mechanism. IMBHBs also enable alLIGO to probe cosmological redshifts up
to z ~ 2.

Burst searches have been run on LIGO data in the past [38; 39]. A burst search is an
un-modeled search for bursts of energy in the data that are not statistically consistent
with noise. Since IMBHB signals merge near the low-frequency edge of the LIGO sensitive
band, only the last few orbits of a massive IMBHB signal stands out above the noise and
therefore closely resembles a short burst of gravitational energy. Fig. 8 shows the S6 ASD
as well as the characteristic amplitude h. = /f - |h(f)| of a m; = my = 150 M, IMBHB
at a distance D ~ 800 Mpc.

Advanced detectors will have vastly improved low-frequency sensitivity over their
predecessors. Fig. 8 also shows a Recolored ASD, which represents aLIGO’s anticipated
ASD through the first few years of operation before reaching design sensitivity. Even still,
the waveform spends much more of its evolution in aLIGQO’s sensitive band. Therefore,
a matched filter search using CBC waveforms as filters can be effectively implemented to

search for IMBHBs in aLIGO data.

www.manaraa.com



40

., ‘ ~—— S6ASD
107174 \'Tk ——  Recolored ASD |3
\,! —— IMBHB WFs

10720 | |
@ a1 b \"(
L1077
% Wl i .
Z g2 \ "‘ !

‘m\ LA i
10-2| N o 171 i ]
24 . .
1075 o 107 107
I [Hz]

Figure 8 : ASDs for data from S6 and S6 data recolored to an anticipated early alLLIGO ASD. Also
plotted is the characteristic amplitude ke = /f - |(f)| for an IMBHB with 150 My, component masses
at a distance of D ~ 800 Mpc.

3.2 CBC search strategy using gstlal

IMBHBs are CBC systems and can therefore be modeled by the waveforms described
in Sec. 1.2.2. Since we have a model for these events, we can perform a matched filter
search for IMBHB signals, and we use the offline gstlal_inspiral software to perform
this search. We outline the search procedure in this section. We start with a general
overview of the search, which describes how the search works in layman’s terms, and

subsequently explain each phase in more detail.

3.2.1 General overview

There are several techniques for searching for GW signals in noisy instrument data.
Knowledge of what the signal looks like (i.e. knowing the shape of the signal) allows
us to employ the optimal way to find hidden signals. We use theoretical CBC waveform
models to find real GW signals from CBC events hidden in noisy instrument data by

trying to match patterns in the data with the shape of the model, or template.

As outlined in Sec. 1.2.2, the CBC waveform is referred to as a chirp because

ol L) fyl_i.lsl
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its frequency and amplitude increase together during its long inspiral phase before it 4l
merges and quickly rings down. Since all CBC chirp waveforms follow this same general
time/frequency evolution, we have an idea of what GWs from CBC events will look like in
our data. However, our model depends on many source parameters of the system, which
include things like the binary’s component masses and sky location. The values of the
system’s source parameters influence certain aspects of the waveform, such as its phase
and/or amplitude evolution. For instance, keeping all other parameters the same, a CBC
chirp waveform with component masses m; = my = 50 My is a much different looking
signal than one with m; = my = 150 Mg, as illustrated in Fig. 11. While they both
have roughly the same properties in that they share common chirp waveform features,
the lower mass binary evolves much slower and merges at a much higher frequency than
the higher mass binary. In fact, these waveforms are the same under a rescaling of the
time variable ¢ — 3t. So, although all chirp waveforms share some similarities, the shape
of the signal depends significantly on source parameters that are a prior:i unknown. This
means that we have many different signal shapes to search for in our data in order to
cover our entire search parameter space.

The way in which we search for signals with varying source parameters is by con-
structing a bank of waveform templates that each have different source parameters, and
thus each have a slightly different shape. The bank is a representation of the entire search
parameter space sampled in such a way that a real GW will be close enough in shape to
the nearest template that it will still be found by searching the data for each template in
our bank.

The most basic CBC models, which assume that the components are non-spinning,
have nine source parameters to search over. Of these nine source parameters, seven
are extrinsic parameters, meaning that they are observer dependent, and only two are
intrinsic, meaning that they are source dependent. All but two of the extrinsic parameters
affect only the amplitude of the signal and do not have to be searched over at all (at least
for the dominant component of the signal), and clever tricks can be used to maximize
over the other two extrinsic parameters. A more detailed explanation of these points

is discussed below. Therefore, the template bank need only be laid out over intrinsic
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parameters. For the non-spinning case, the intrinsic parameters are m; and ms. 42

The way one might imagine searching for signals with known shapes hidden in noisy
data is to filter the data through each waveform template and compare the shape of your
templates to the shape of the data. If the data only contains noise, there would be no
overall pattern in the data that matches the shape of any of your templates. However, if a
CBC signal is present in the data, the pattern it makes in the data will match at least one
of your templates. Instead of doing this comparison by eye, which would only be successful
for unrealistically large signals, we use a statistic called a matched filter to determine how
closely the data matches our waveform templates. Roughly speaking, the matched filter
is a measure of the correlation of the data with the signal model. It is typical to set
a threshold on the matched filter or some matched-filter-like quantity. Anything above
this threshold is called a “trigger” and might be a real GW signal. The matched filter
is the optimal detection statistic if the statistical properties of the instrument’s noise do
not change over time (i.e. the instrument noise is stationary) and the noise is normally
distributed (i.e. the instrument noise is Gaussian).

However, the noise in the LIGO and Virgo detectors is neither stationary nor Gaussian.
It is not stationary because environmental factors, such as rush hour traffic, can cause
the instrument’s noise properties to change over time. The noise is roughly stationary,
though, over time scales of a GW signal, and the statistical properties of the noise can
be recomputed over time scales larger than that of a GW signal but smaller than that
of the time-evolution of the noise. The noise is not entirely Gaussian either because it
contains transient spikes, which we call “glitches”. Because glitches can be large relative
to signals (they are sometimes visible by eye, whereas a real signal most likely will not
be), even though glitches do not match the shape of a template, they can still result in
large values for the matched filter, since the statistic is derived assuming Gaussian noise.
Therefore, the matched filter statistic alone is not enough to claim a GW detection.

Glitches are assumed to be uncorrelated across detectors, meaning that a glitch in
H1 will be independent of what is happening in L1. However, if a GW hits H1, then L1
will also contain a GW signal at some nearby time. Therefore, a powerful veto for ruling

out triggers produced by glitches is to check for triggers in at least one other detector
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that occur at roughly the same time. If a trigger in a single detector does not have a
counterpart at a nearby time in another detector, it is assumed to have been caused by
a glitch and is not considered a GW candidate. Not only does a trigger in one detector
have to have a counterpart in another detector that occurs at roughly the same time, it
must also have been found with the same template. For instance, it might happen that
a trigger-producing glitch occurs in H1 at the same time that a trigger-producing glitch
occurs in L1. Since the glitches are uncorrelated, they may have very different shapes and
result in large matched filter values for very different looking templates in each detector.
These triggers are assumed to be caused by glitches since they were found with different
templates. Therefore, triggers must be coincident in time and template in order to be
considered a GW candidate.

Unfortunately, trigger-producing glitches happen often enough in our detectors that
they even pass our coincidence vetoes, and we therefore need an additional detection
statistic designed to suppress their significance. The detection statistic that is effective
at down-weighting glitches is the 2 statistic. Just as the matched filter statistic can be
roughly thought of as a correlation of the data with the signal model, the x? statistic can
be roughly thought of as a measure of how consistent the residual of the data and the
signal model is with noise. Real signals will have small values for the x? statistic while
glitches result in much larger values for the x? statistic.

Equipped with two detection statistics and two coincidence vetoes, triggers are ranked
by the likelihood ratio, which is a function of our two detection statistics. The numerator
of the likelihood ratio is the probability that a coincident trigger is a real GW signal and
is a distribution that can be analytically derived; the denominator is the probability that
the trigger was produced by noise and is constructed using the rejected noise triggers,
i.e. those found in one instrument with no counterpart in the other. The likelihood ratio
is used to rank all our GW candidates. It is also used to calculate a coincident trigger’s
false-alarm probability and false-alarm rate. The false-alarm rate is the typical quantity
used to demonstrate our confidence that a given GW candidate is a detection.

This was a very general overview of our CBC search strategy. In the following sub-

sections, we provide more detail into how each step is accomplished.
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3.2.2 Traditional method to calculate signal-to-noise ratio? 44

If a GW from a CBC event, such as an IMBHB, hits a GW detector, such as LIGO or
Virgo, then the data d(t) will consist of both a true GW signal haw (t; gw) with source

parameters 0w and instrument noise n(t):
d(t) = haw(t; Oaw) + n(t). (3.2.1)

However, if no GWs hit the detector, then the data will consist only of noise: d(t) = n(t).
Assuming that the noise n(t) is stationary and Gaussian, then the optimal detection

statistic is called the matched filter and is defined as

(0) = (d(t), haw(t; faw)). (3.2.2)
where we have also defined a noise-weighted inner product of two time series a(t) and
b(t) as follows:

*a(hHr(f),

(a(t), b(t)) = 4Re / f (3.2.3)

0 Sn(f)

Here, tildes represent Fourier transforms, and .S,, is the one-sided PSD of detector n. No-
tice that the matched filter assumes that we know the exact gravitational waveform with
its exact source parameters. If only nature were so kind. .. Instead, we have theoretical
models for the CBC waveform, which we call templates, and these models depend on
many intrinsic and extrinsic parameters. In order to perform a matched filter search for

GWs hidden in our data, we must find a way to search over each of these parameters.

Searching over extrinsic parameters: Be clever

Eq. (1.2.21) in Sec. 1.2.2 for the CBC waveform in the time domain can be written very

generally as:

hT(t§§) = (%) COS [2% + 2¢(t — to; é;n) ) (3.2.4)
eff \Vex,

where the T subscript labels h as a waveform template. Here, we have separated the
waveform parameters g into intrinsic parameters qun and extrinsic parameters Glx. Addi-

tionally, we have separated the arrival time ¢ty and phase ¢g, which are arbitrary constants

2The entirety of this subsection closely follows Refs. [40] and [9].

www.manaraa.com



in the CBC waveform, from the rest of the extrinsic parameters. We have also grouped 45
the arrival time ¢, with the dependent time parameter ¢, since they always appear in
combination. Therefore, the waveform parameters are 0 = {@n, 9;(, ®o}-

Since the extrinsic parameters QZX only enter into the amplitude of the waveform, they
merely set a scale factor for the matched filter search. This assumes that the extrinsic
parameters do not change over the signal duration, which is true for short-duration non-
spinning and aligned-spin systems. We can therefore just normalize the matched filter,
which makes it unnecessary to search over the extrinsic parameters 8_;,(. By convention,
we also choose to set Do.g = 1 Mpc.

The arrival time, however, is an important parameter to search over since it determines
where in the data the signal is located. One could imagine sliding a waveform template
along the data and calculating the matched filter at every point in time. This is equivalent

to doing the following:

—

2(to;0n) = (d(t), ho(t — to; 0n)) (3.2.5)
= e —< ) (/50 )ex e
_ 4R /O SIS exp i 1), (3.2.6)

where z(to; @n) is the matched filter time series for the waveform template At with in-
trinsic parameters 5111, since we do not need to search over the extrinsic parameters 9_;)(.
The second line follows from the first because the Fourier transform of hr(t — to; @n) is
iLT( f; 0_;n) exp(—2mifty). Ignoring the unknown phase ¢y which will be addressed shortly,
if the waveform template is close in form to the true GW signal, then the largest matched
filter value will correspond to the matched filter maximized over arrival time.

The phase ¢ is also an unknown parameter that must be searched over. This is done
by constructing a linear combination of matched filter outputs where each corresponds
to the waveform evaluated at orthogonal phases. Then, the matched filter maximized
over phase is just the quadrature sum of the two matched filter outputs. An efficient
way of constructing these orthogonal-in-phase matched filter outputs is by computing

the complex matched filter time series

2(to; 6_'111) = z(to; 0;) + 1y(to; 0_;11) = 4/00 m exp(2mi fto)df. (3.2.7)

0 Sn(f)
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The function z(to; 6, ) is the matched filter time series of the template in Eq. (3.2.4) eval- 46

—

uated at 2¢yg, and y(to; 0in) is the matched filter time series for the template evaluated at
209 — 260 — /2, since for f > 0: hr(f;0)|age—r/2 = hr(f; ) 2006™? = ihr(f; 6in) |2o-

The matched filter maximized over phase is just

(2t Bo)| = /22t ) + 92 (t0; ). (3.28)
Finally, as mentioned above, we choose to normalize the matched filter output to
eliminate any amplitude dependence in the template waveforms. We call the normalized

amplitude of the complex matched filter time series the signal-to-noise ratio (SNR) time

series:
n to; ein
SNR(ty: ) = POl (3.2.9)
O'(Qin>
where the normalization constant is
() = A/ (b (t — to; Bh), Bt — t;01)). (3.2.10)

The value of 0(9;1) is a measure of a detector’s sensitivity and does not depend on ¢,
since the two time series are the same and thus share the same arrival time. The SNR
maximized over time and phase for a given template, which we call the SNR for simplicity,
is the largest value of the SNR time series.

This is how we search over extrinsic parameters. Next, we address searching over

intrinsic parameters.

Searching over intrinsic parameters: Construct a template bank

The final parameters to search over are the intrinsic parameters @n. To do so, we generate
a bank of waveform templates with specific intrinsic parameters discretely sampled over
the entire parameter space of a given search. The intrinsic parameter space must be
sampled finely enough that the true waveform is close enough to the nearest template to
produce a large enough SNR for detection. This is done by choosing a minimal match
(MM) and placing templates in such a way that any possible GW signal is guaranteed to
have a mismatch less than 100(1 — MM)% with at least one template in the bank [41]. If

a template bank does not meet this minimal match criterion for all possible waveforms
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within the desired intrinsic parameter space of a given search, the template bank is said a7
to have “holes”.

To search over the intrinsic waveform parameters, an SNR time series is calculated
for each template in the bank. It is convenient to absorb the constant 0(0;1) into the

template bank by normalizing the templates as follows: hr, = ht/o = hr/+/(hr, ht).

The SNR time series is then

— —

SNR(to,em) == |Z(t0;91n)|, (3211)

where the complex matched filter time series is written in terms of normalized templates:

),  d(f) W5 (f 05
2(to; On) = 4 /0 (f)szl(lj(f]; )

Any time the SNR time series of Eq. (3.2.11) surpasses a pre-determined SNR threshold

exp(2mi fto)df. (3.2.12)

for a given template, local peak-finding is applied over time to find the largest value of
the SNR time series, and the corresponding SNR, arrival time, and template parameters

are stored as a single-detector trigger (augmented with y2 ., as described in Sec. 3.2.4).

3.2.3 SNR calculation in gstlal

The previous subsection described the traditional method for calculating SNR, which
involves Fourier transforms to maximize over time. Since gstlal_inspiral was devel-
oped as a low-latency trigger generator, it calculates the SNR time series in the TD to
avoid the unavoidable latency accumulated by performing this operation in the FD. The
normalized matched filter time series is computed in the time-domain as follows:
— 0 —
X(to; in) = 4/t dy(t 4+ to)hrwn(t; Oin)dt, (3.2.13)
—tdur

where dy(t) is the whitened data stream, which is the inverse Fourier transform

of d(f)/\/Su(f), and hrwn(t;0n) = hrw(t;0n)// (i, hry) is the normalized

whitened waveform template, where hT,w(t;gm) is the inverse Fourier transform of
ho(f:00)//So(f) [42]. Since the template has some finite duration tqy, the integral
is just performed over the duration of the template. To maximize over phase, the

—

matched filter time series y(to;0;,) for the orthogonal-in-phase template evaluated at
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2¢0 — 2¢9 — m/2 must also be calculated. Then the quadrature sum of the two matched 48
filter outputs is the SNR time series maximized over phase. Local peak finding is then
used to maximize over time.

Despite the slightly different strategy, calculating the SNR (maximized over time and
phase) in the TD is equivalent to calculating this quantity in the FD. However, TD filter-
ing is less computationally efficient than using a fast Fourier transform for FD filtering.
To make TD filtering more computationally competitive, gstlal_inspiral time-slices
and down-samples its templates and then performs a singular-value decomposition (SVD)
on the template bank to drastically reduce the number of templates required for filtering.
Since these operations are not essential to understanding the development of the CBC
search for IMBHBs, we will not delve into more detail. Instead, we refer the interested

reader to Ref. [42].

3.2.4 Autocorrelation y?

Sec. 3.2.2 introduced the SNR as the optimal detection statistic for stationary, Gaussian
noise. However, the noise in the LIGO and Virgo instruments is neither stationary nor
Gaussian. Environmental factors, such as rush hour traffic, cause the instrument’s noise
properties to change over time. The noise is roughly stationary, though, over typical
time scales of a GW signal. The noise PSD can therefore be frequently recomputed over
time scales larger than that of a GW signal but smaller than that of the time-evolution
of the noise. However, transient noise excitations called “glitches” are non-Gaussian
noise features that can cause the SNR detection statistic to fail. For this reason, the y?
statistic, which is effective at assigning glitches low significance, is a detection statistic
calculated in addition to the SNR. There are many different types of y? statistics, and
gstlal_inspiral typically uses the autocorrelation x? statistic, or autochisq for short.
The autochisq statistic is found by integrating the square of the difference between the
SNR time series centered around a GW trigger and the scaled autocorrelation function
(ACF) of the associated template. A template’s ACF is essentially calculated by finding

the SNR time series of the template filtered over itself:

ACF (to; 0i,) = ‘4 / Rt en (f3 O) B o (f O1n) exp(2mi fo)df | (3.2.14)
0
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Since the templates are normalized, the maximum value of the ACF, which happens at 49
to = 0, is 1. In order to compare the ACF to the SNR time series, it must be scaled to
the same amplitude, and the maximum value of the SNR time series must be shifted to

to = 0. The autochisq statistic can then be written in the following way:

T/2
X?xuto = /
-T/2

where SNRy = SNR(0; (‘Zn) is the maximum value of the SNR time series and 7" is a tunable

— —

2

amount of time over which to calculate x2,,,. In practice, it is the autocorrelation length
(ACL) that is the tunable parameter which specifies the number of samples to include
in the integral, and T = ACL - At where At = 1/(sample rate). The value of x2,,,
will be small for signals that are triggered by closely-matching templates, which should
happen for real GW signals, and large for signals triggered by templates with dissimilar
properties, which should happen for glitches [43].

Fig. 9 demonstrates how the SNR maximized over phase and time and the autochisq
statistics can be used to distinguish noise events from real signals. Plotted by red and
black crosses are all the coincident triggers recorded in a gstlal_inspiral search run
over two months of simulated data. The red crosses labeled “Injections” are candidates
that are associated with simulated GW signals manually injected into the data. The black
crosses labeled “background” are candidates that are not associated with injected signals
and are surely noise events since the search used simulated data. If the y2,, axis were
projected onto the SNR axis, which would be the case if SNR were the only detection
statistic used, then the injections would not be distinguishable from the background
events. The inclusion of the autochisq statistic, however, results in a clear separation
between injection and background events. Another thing to notice is that the value of
o increases with SNR. This is apparent in Eq. (3.2.15) since the difference between

each point in the SNR and ACF time series will increase with the maximum SNR.

3.2.5 Ranking GW candidates®

The ultimate goal of a GW search is to find GW candidate signals and make statistically

significant claims regarding how likely they are to be real GW detections. The statistic

3The entirety of this subsection closely follows Ref. [44].
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Figure 9: x2,:, vs. SNR in H1. Values associated with injections are marked in red and values associated
with noise events, which are often referred to as “background” events, are marked in black.

that is often associated with the significance of a GW signal from a CBC search is the
false-alarm rate (FAR), which is a measure of how often noise will result in a signal with
identical properties. In this section we outline how to go from trigger generation all the

way through FAR calculations.

Coincidence

In Sec. 3.2.2, we present SNR as the optimal detection statistic in stationary Gaussian
noise. While the LIGO-Virgo detector noise is neither stationary nor Gaussian, the SNR
statistic is still useful for finding and ranking GW candidates. In a gstlal_inspiral
search, as the data is filtered through each template in the bank, whenever the SNR
time series exceeds a pre-determined SNR threshold, which we choose to be SNR,, = 4,
local peak-finding is applied over time to find the largest value of the SNR time series.
The corresponding SNR, arrival time, and template parameters are grouped together as
a single-detector trigger. As each trigger gets generated, the autochisq statistic also gets
calculated and grouped with the rest of the trigger information.

When single-detector triggers are coincidence in time and template across at least two

detectors, they are stored as GW detection candidates. Coincident in time means that
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triggers are found in different detectors within some time window of each other. This time o1

window accounts for the small but finite amount of time it takes for a GW traveling at
the speed of light to hit one instrument and then another. Coincident in template means
that the single-detector triggers are also found with the same template across detectors.
When single-detector triggers are not coincidence in time and template across at least
two detectors, they are assumed to be noise events.

From here on out, when we use the word “coincidence” in reference to triggers, it is

implied that we mean “coincident in time and template”, unless otherwise stated.

Likelihood ratio

The SNR and autochisq statistics are used to rank GW candidates through the likelihood

ratio .
A — P(SNR17 Xiuto,l’ s 7SNRn7 Xzzxuto,m 01H|S)

N P(SNRh Xguto,la < SNRTL: Xiuto,n? ein‘n) ’

which is the probability of observing a certain combination of detections statistics given

(3.2.16)

that the candidate is a true signal “s” over the same probability give that the candidate

(1))

is the result of noise “n”. It is assumed that the likelihood ratio can be separated into

the product of likelihood ratios from individual detectors:

—

< < P(SNRn7 Xiuto,n’ 91n|S)

A=A = = . 3.2.17
1;[ H P(SNR’H» Xguto,rw 61H|n) ( )

The numerator of A, is evaluated assuming that signals are found during periods of
time where the data is relatively stationary and Gaussian. Therefore, the probability of
observing certain SNR values can be determined by assuming signal sources are uniformly
distributed in space and the probability of observing certain x2 . is demonstrated in
Ref. [45]. This numerator therefore is neither detector dependent nor template dependent.
The denominator of A, is constructed by filling a histogram with the SNR and autochisq
values from the non-coincident single-detector triggers. Fig. 10 plots examples of the raw
histograms for the numerator and denominator of the likelihood ratio in Gaussian noise
and recolored enhanced LIGO data for a 1-day analysis.

Once constructed, the likelihood ratio A is used to rank all candidate signals against

each other. The higher the likelihood ratio, the more likely a candidate signal is a real
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GW and not just a noise product. In order to assign a meaningful significance to a GW 52
candidate, we calculate its false-alarm probability and false-alarm rate from its likelihood

ratio.

False-alarm probability and false-alarm rate

The false alarm probability (FAP) for a candidate with likelihood ratio Ag is the prob-
ability the a noise event has a likelihood ratio greater than or equal to Ay. Basically,
the FAP is the probability that a noise event is at least as likely as the candidate. The
FAP is found from the probability of observing a certain likelihood ratio A’ given that
the candidate is a noise event, or P(A’|n). This can be found by first integrating the
denominator of the likelihood ratio over surfaces of constant likelihood ratio

PN, fip|n) = / P(SNR1, X201 - - -+ SNRuuy Xto s Oin[0)d" 5 (3.2.18)

(M)

to find the probability of observing a certain likelihood ratio A’ with a template defined
by the intrinsic parameters 6y, (see Ref. [44] for details on how this is done), and then

marginalizing over the template bank:
P(N'[n) = / P(N, 0y |n)d0s,. (3.2.19)

Integrating from A to infinity

P(N > Aln) = / PN |n)dA (3.2.20)

A
gives the probability that a noise event would be assigned a likelihood ratio at least as
large as A. This is the FAP if a GW search produced just a single coincident trigger.
However a GW search will produce many GW candidates. The probability of observing

one or more events with a likelihood ratio at least as large as A when the search produced

m candidates is
FAP(A) = P(N' > Any,...,n,) =1— (1 — P(A" > Ajn))™. (3.2.21)

Notice that the FAP never used any signal information. The FAP is thus independent of

whether or not the search detects any real signals.
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The FAP can be used to calculate the FAR of a candidate signal. It is assumed that 53
the probability of observing one or more noise events with a likelihood of at least A is a

Poisson distribution, which takes the form
FAP(A) =1—e™?, (3.2.22)

where A is the mean number of events. Therefore, if the T is the observational time, the

FAR is
FAR(A) = A(TA) _ _Mmfl= ?AP(A)]. (3.2.23)

By combining Egs. (3.2.23), (3.2.21), and (3.2.20), the FAR can be equivalently expressed

as A /
FAR(A) = — " lo ];(A A (3.2.24)

In this way, every GW candidate produced during the filtering process gets ranked
by the likelihood ratio of Eq. (3.2.17), and assigned a FAP from Eq. (3.2.21) and a FAR
from Eq. (3.2.24).

3.3 Developing a CBC search for IMBHBs

The gstlal_inspiral software was originally developed to search for BNSs in low-
latency. It has since been expanded to a broader parameter space that includes NSBHs
and stellar-mass BBHs [46]. My collaborators and I are working to extend the search
parameter space even more to include massive binaries involving IMBHs. This section
outlines what has been learned in extending gstlal_inspiral to search over the IMBHB

parameter space and presents results from a recent mock data challenge (MDC).

3.3.1 MDC1

MDCs are a primary tool in the LSC for testing the sensitivity of a GW search. It is
typically the first testing ground for tuning and optimizing a GW search in preparation
for searching for real signals in real GW data. In an MDC, synthetically produced data
(or sometimes archival data) is injected with simulated GW signals (called “injections”)

to test a given search’s sensitivity for finding these injections and ranking them as real
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signals. The data is typically constructed to mimic real GW data, and the injection set o4
is designed to mimic the types of astrophysical signals being searched for, though they
are usually injected at a much higher rate than anticipated. For a CBC search, the MDC
tests how well a template bank recovers the injection set and is a testing ground for
adjusting any tunable parameters to improve the search sensitivity.

We have finished the first IMBHB MDC and are working through a second. Each
MDC is designed to test different aspects of the IMBHB search. Since this is the first
CBC search for sources up to a total mass of ~ 300 My, MDC1 was designed to merely
be an end-to-end test of how effective a CBC search could be at detecting such high
mass signals. We therefore kept the MDC1 configuration to be as simple and idealized

as possible.

MDC1 configuration

In Fig. 13, we show the amplitude spectral density (ASD), which is just the square root
of the PSD, of the MDC1 data set. It was generated by whitening enhanced LIGO
data from the sixth science run and recoloring it to the anticipated ASD for the early
years of Advanced LIGO. Whitening is the process of removing the overall frequency
dependence of a data set by dividing by its ASD. Recoloring is the process of adding
an overall frequency dependence to the data. The result is glitchy data, much like we
expect Advanced LIGO-data to be, that has the same noise floor as is expected in early
Advanced LIGO. We used roughly two months of recolored data from the three detectors
H1, L1, and V1.

For simplicity, we focussed our MDCI1 efforts on three distinct source classes: asym-
metric mass ratio binaries uniformly and narrowly distributed about m; = 50 My and
mo = 5 Mg, equal mass binaries with moderate component masses uniformly and nar-
rowly distributed about m; = ms = 50 Mg, and equal mass binaries with large component
masses uniformly and narrowly distributed about m; = my = 150 Mg, (see Fig. 12). For
simplicity, we refer to each class of signals as the “5:50” , “50:50”, “150:150” injection
set and have plotted one of each in Fig. 11 for reference. The injections were distributed

uniformly in a sphere whose radius corresponds to the distance to an optimally-oriented
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signal with single-detector characteristic SNR = 14 (defined in Sec. 4.3.3). For reference, b5

this distance is 240 Mpc for 5:50 injections, 1,140 Mpc for 50:50 injections, and 1,160 Mpc
for 150:150 injections. The simulated signals were injected every 100 seconds to densely
populate the data with non-overlapping signals. Signal orientations were also drawn from
uniform distributions. The waveform approximant used to simulate these sources is EOB-
NRv2, which is like a pN inspiral waveform with a merger and ringdown calibrated to
NR simulations and is part of the LIGO Algorithm Library [47]. This waveform family
does not allow for spinning components. Injections were either generated starting at a
lower frequency fiow of 25 Hz or 10 Hz, which is explained more in the next section.

We searched for these injection sets using an EOBNRv2 template bank. The templates
were placed over the intrinsic parameters m; and msy to cover the overlapping surface of
3 My < mg < my <200 Mg, 50 Mg < my +mg < 350 Mg, and 1/14 < my/my <1
with a minimal match of roughly 0.985. Templates were either generated starting at
a lower frequency fiow of 25 Hz, resulting in 645 templates, or 20 Hz, resulting in 779
templates, and the reasoning for this is explained more in the next section. Fig. 12 shows

the template bank placement in mass space for templates generated at fi,,, = 20 Hz.

Search sensitivity

To determine how sensitive a search is to an injection population, we treat the injections
as we would any real signal in our data. We filter the data (with injections) through our
template bank and collect a list of GW candidates. Each is ranked with a likelihood,
which eventually gets translated into a FAR. To analyze how sensitive the search is to
our injection sets, we use a threshold in FAR to separate all of our candidates associated
with injections into “missed” or “found” categories. Fig. 15 shows missed /found plots in
decisive D.g versus M. for each injection set. For injections marked as “found”, the
decisive D.g is the second largest effective distance calculated for the coincident detectors;
for injections marked as “found”, the decisive D.g is the second largest effective distance
calculated for the participating detectors. The FAR threshold used to separate “missed”
from “found” in these plots is FAR, = 1/(30 days), where 7 indicates a threshold.

The number of “found” injections and their associated distances compared to the
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total number of injections is used to calculate the sensitive distance of a search, which is
roughly how far away the injection set signals can be detected in a real search. To do this,
we first calculate the sensitive volume by performing an efficiency-weighted integration

over b spherical shells of thickness Ad; at a distance of d;:
b
Vi(r) = Z 4re;(T)d? Ad;, (3.3.1)

where the efficiency in the i*" shell is defined to be

number of “found” injections in i bin Ntound,i

i(T) = — — Y = , 3.3.2
(7) total number of injections in " bin Nioti ( )
which is a function of the threshold. Then, the sensitive distance is just
3V (r)]"?
Dy(1) = | ——= : 3.3.3
n- [ (3.5

The uncertainty in the efficiency due to the finite number of injections in each distance bin,
which is estimated by modeling the efficiency with a binomial distribution, is propagated

through the sensitive volume and into the sensitive distance like so:

1 oy
= —Dy—=, 3.4
0 Dy 3 V; (33 )
where
b
ov, = | > _(4mo., d?Ad;)? (3.3.5)
and
61(]. — Ei)
O = 4| —- 3.3.6
Ntot,z' ( )

So, the sensitive distances in Fig. 16 are computed through Eq. (3.3.3) with an uncertainty
estimated by Eq. (3.3.4) and are a function of whatever threshold is used to separate

“missed” and “found” triggers associated with the injection sets.

Waveform handling

For the most part, we found that gstlal_inspiral was effective at searching for
IMBHB signals (to skip straight to these results, see Figs. 15 and 16). However, since

gstlal_inspiral was originally developed to search for long BNS signals, it was not too
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surprising that we did run into problems with the way the high-mass 150:150 waveforms
were being handled. In particular, methods for conditioning the beginning of the wave-
forms and choices regarding what fi, should be used for waveform generation had to be
adjusted for searching over the IMBHB parameter space.

We initially decided that generating waveforms at a lower frequency of fi,, = 25 Hz
would be low enough that, after whitening the data and the templates as described
in Sec. 3.2.3, the beginning of the waveform would be overtaken by the noise at lower
frequencies. This seemed reasonable considering the ASD at 25 Hz is roughly one order
in magnitude above the noise floor (see Fig. 13). For this reason, we did not even bother
to taper the beginning of our waveforms before injecting them into the data. However,
as shown in Fig. 13, a 150:150 IMBHB injection starting at 25 Hz located ~800 Mpc
away abruptly starts above the noise amplitude. Therefore, an unnatural feature was
introduced at the beginning of each high-mass injection after Fourier transforming the
data to whiten it and inverse Fourier transforming the data back into the TD to perform
the SNR calculation. This is a manifestation of the Gibbs phenomenon that is typically
avoided by either tapering the start of injections or injecting at a low enough frequency
that the large noise amplitude makes the discontinuity is insignificant. However, the
templates used in our search were tapered and therefore did not experience this effect.
As a result, the autochisq statistic was negatively affected by the unnatural mismatch
between our templates and injections, and the search sensitivity for high-mass signals was
poor.

Even though the templates we used were tapered, the search sensitivity still suffered
from them being generated starting at fi,, = 25 Hz. Tapering is typically applied over
the first few waveform peaks. However, as shown in Fig. 11, a 150:150 signal starting at
fiow = 25 Hz only has a couple large amplitude cycles. Therefore, tapering over the first
few peaks noticeably reduces the SNR recovery of high-mass templates. We demonstrate
this effect in Fig. 14. Notice that templates starting at 25 Hz that get tapered and
subsequently whitened have noticeably less amplitude in their first few peaks than if they
were not tapered.

To account for our original oversights in the waveform handling, we reran the search
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We started our injections at the very low starting frequency of 10 Hz to be sure that
the waveforms started out-of-band. However, there frequency at which we start our
templates affects the number of templates in our template bank. We found that the
search sensitivity was insignificantly affected by pushing the starting frequency of our
templates below 20 Hz. This is because tapering has a minimal effect on the amplitude

of our waveform if we start them at 20 Hz, as shown in the middle plot of Fig. 14.

MDC1 results

In Figs. 15 and 16 we show the results of our search before and after accounting for
waveform handling issues. It is clear that the sensitivity to the 150:150 injections was
hurt the most by the waveform handling issues, the sensitivity to the 50:50 injections was
slightly affected, and the sensitivity to the 5:50 injections felt mostly insignificant effects.
This makes sense in two ways. Firstly, the lower mass signals have lower amplitudes at
near-detection threshold SNRs, and therefore when they are injected to abruptly start
in-band, the resulting Gibbs phenomenon feature will be less noticeable. Secondly, the
lower mass signals are much longer, and therefore tapering out some amplitude in the
first few peaks of the waveform does not have as dramatic of an effect on these signals.
More recently, we have incorporated a function into our waveform generation routines
that, given an fi,w, generates a waveform starting at a lower frequency and tapers up to
flow. This ensures that our injection and template waveforms will be free of any Gibbs

effects and will not lose any signal power due to tapering.

3.3.2 MDC2

We are currently working through a second MDC. The purpose of MDC2 is to test the
effects of spin and precession in IMBHB sources. Since little is known about IMBHBs
and their formation mechanisms, while we expect these systems to be spinning, it is
unclear whether to expect their component spins to be aligned/anti-aligned or to expect
the systems to be precessing [37]. Additionally, we will be testing the effects of waveform

uncertainty by using different waveform families for injections and templates.
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Preliminary results suggest that the sensitive distance to the 150:150 and the 50:50 59
injections with aligned spin are roughly comparable to our MDC1 results. A few factors
are at play here. Firstly, all else being equal, the aligned-spin (anti-aligned spin) systems
of MDC2 can be seen to slightly larger (smaller) distances compared to the non-spinning
injections of MDC1 [37; 48; 49]. Secondly, our non-spinning template bank is not expected
to be completely effectual to spinning systems. Therefore our MM condition might not
be conserved, resulting in less sensitivity to these sources. Thirdly, for MDC2, we are
using a more sophisticated likelihood ratio than the one described in Sec. 3.2.5, which
results in increased sensitivity [50].

Preliminary results however show a sharp drop in sensitive distance for the 5:50 injec-
tions for large aligned-spin values. While this feature is still being investigated, sensitive
distance can be restored by using an aligned-spin template bank. Indeed, preliminary
results show that an aligned-spin bank has roughly the same or better sensitivity across
each injection set. However, extending to an aligned-spin bank adds an order of magni-
tude more templates to the bank (from ~1,000 to ~10,000 templates), resulting in a more
computationally expensive search. The question then becomes “Does the benefit of an
aligned-spin bank outweigh the cost?” Further investigations are underway in an effort
to decide whether or not to perform the IMBHB search with an aligned-spin template
bank.

3.4 Conclusion and discussion

A CBC search for IMBHBs may result in the first conclusive proof of the existence
of IMBHs. This would be an extraordinary discovery that would shed light on super-
massive BH formation, globular cluster dynamics, strong-field GR, and much more. A
gstlal_inspiral search for IMBHBs is a relatively inexpensive search, since a non-
spinning bank will only consist of ~1,000 templates. In MDC1, we showed that advanced
detectors in early configurations can see IMBHBSs out to sensitive distances ranging from
~100 Mpc for light binaries to ~1,000 Mpc for heavy binaries. However, we have only
demonstrated the search sensitivity to non-spinning systems. We are currently working

through a second MDC that will test the search sensitivity for highly spinning and/or
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precessing systems.

We have learned the importance of proper waveform handling for analysis involving
high-mass signals, such as IMBHBs. In particular, we saw that tapering the first few cycles
of a short, high-mass waveform can noticeably decrease its power. Instead, templates and
injections should be generated at lower frequencies than requested and tapered up to such
frequencies to ensure that the signals maintain full power at the intended lower frequency
band. Otherwise an IMBHB search is less sensitive to high-mass signals.

Preliminary results in MDC2 also suggest a transition to an aligned-spin bank. Since
such a transition results in an order of magnitude more templates, more investigations
are being performed to weigh our options going forward.

Eventually, we will have to explore the entire search mass parameter space in a sub-
sequent MDC or as part of an engineering run (ER). An ER is an end-to-end test of data
collection at the instruments through the announcement of GW event candidates. In the
upcoming ER, we could run the IMBHB search on real detector data. Not only is this the
first time we will be able to test our search on alLIGO data, which might have different
and unexpected characteristics compared to the recolored S6 data that we have used so
far, but this data is also forecasted to have the best sensitivity to date, even eclipsing the

mark set by S6.
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Figure 10 : The likelihood ratio Api, its numerator P(SNR’H17X§111;07H179_;H|S)7 and its denominator
P(SNRy;, Xiut07H1,(§in|n) are plotted as 2D histograms in raw counts on x2,,,/SNR? versus SNR axes.

The left plots were generated with Gaussian data, and the right plots were generated with recolored S6

data. The top plots are the numerators of the likelihood ratios, the middle plots are the denominators

of the likelihood ratios, and the bottom plots are the likelihood ratios.
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Figure 11 : Plots of hy for 5:50 (top), 50:50 (middle), and 150:150 (bottom) systems with EOBNRv2

generation at fiow = 25 (purple), 20 (red), and 10 (green).
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IMBHB MDC template bank : fi,, = 20 Hz, 779 total templates
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Figure 12 : Non-spinning MDC1 template bank. The blue dots mark the template placement in mass
space, and the orange stars mark the narrow mass distributions of the injections used in MDCI.
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Figure 13 : ASDs for data from S6 and S6 data recolored to an anticipated early aLIGO ASD. Plotted
is the characteristic amplitude he = v/ - |(f)| for an IMBHB with 150 My component masses at a
distance of D ~ 800 Mpc generated starting at 25 Hz.
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Sample 150 : 150 M, whitened waveform with fi,;, = 25 Hz
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Figure 14 : Plotted are whitened 150:150 waveforms generated starting at either 20 or 25 Hz. The top
two plots compare tapered with untapped waveforms, and the bottom plot compares tapered waveforms
with different minimum frequencies.
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Figure 15 : Missed/Found plots comparing the effects of waveform handling. The dots represent injected
signals. Black dots are missed signals, and colored dots are signals found coincident in a certain combi-
nation of instruments as labeled in the legend. Decisive Degg refers to the second smallest single-detector
D.g. The distinction between Missed and Found is made through a FAR threshold of 1/(30 days). (Left)
Results from a search in which we used templates generated starting from 25 Hz and injected untapped
signals generated starting from 25 Hz. (Right) Results from the same search except that we generated
templates starting from 20 Hz and injected tapered signals generated starting from 10 Hz.
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Figure 16 : Sensitive distance plots for MDC1. (Top) Results from a search in which we used templates

generated starting from 25 Hz and injected untapped signals generated starting from 25 Hz. (Bottom)

Results from the same search except that we generated templates starting from 20 Hz and injected

tapered signals generated starting from 10 Hz.
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Chapter 4

Systematic and statistical errors in a
bayesian approach to the estimation
of the neutron-star equation of state

using advanced gravitational-wave

detectors!

4.1 Background and Motivation

Advanced interferometric gravitational-wave (GW) detectors currently under construc-
tion are expected to begin operating in the next few years. Advanced LIGO [52] is
expected to achieve its design sensitivity c. 2019 [8], at which time the detection rate of
binary neutron-star (BNS) events in a single detector is expected to be ~40 yr~!, though
this value is quite uncertain and ranges from 0.4-400 yr—! [53].

When a compact binary coalescence (CBC) signal is detected [54; 55], the correspond-
ing interferometer data stream segment is sent through a parameter estimation pipeline to
determine the source parameters of the system. Some of these source parameters include

the binary component masses and spins, the sky location, distance, and orientation of the

!This chapter was published in Ref. [51]
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system. Bayesian inference is used to explore the probability distribution of the CBC’s 68

source parameters by comparing model waveform templates, whose form depends on these
source parameters, to the data stream segment containing the GW. For this work, we
use lalinference_mcmc, which is included in the LALInference LSC Algorithm Library
[47], as our parameter estimation pipeline. It is a Markov Chain Monte Carlo (MCMC)
sampler designed to efficiently explore the full waveform parameter space in order to make
reliable and meaningful statements about CBC source parameters [56-58].

This chapter’s focus is on measuring the effect of tidal influence on BNS GW signals
with advanced detectors. Neutron stars (NSs) in merging CBC systems will be tidally
deformed by the gravitational gradient of their companion across their finite diameter.
This effect is insignificant at large separations but becomes increasingly significant as
the NSs near each other [59]. The internal structure of a NS, which is characterized by
its equation of state (EOS), determines how much each star will deform. The amount
that a NS deforms will affect the orbital decay rate, which is encoded in the observed
gravitational waveform. Therefore, if a gravitational signal from a BNS system is detected,
then such a detection could provide insight into the NS EOS [59-62].

In order to make meaningful statements regarding the recoverability of tidal param-
eters from BNS signals, it is important to understand the effects of error on parameter
estimation. One such obstacle to measuring tidal influence is accurate waveform model-
ing. The error resulting from inaccurate waveform models is a kind of systematic error.
Some of the most commonly used CBC waveforms rely on a post-Newtonian (PN) expan-
sion in orbital speed. As the CBC inspirals, the orbital speed of the binary components
increases leading to a higher frequency signal. These waveform families are thus unreli-
able at high frequencies where orbital speeds become large [10] and tidal effects emerge.
Another difficulty in measuring tidal influence results from fluctuations in detector noise.
This type of error is called statistical error. Tidal influences only noticeably affect the
final high frequency orbits of the binary where the detector noise (in strain units) is com-
paratively large. Extracting such a small influence occurring in the high frequency band
is an investigation at the very brink of our detectors’ sensitivity. Even small fluctuations

in detector noise might be able to dramatically affect the recovery of tidal deformability.
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Understanding the magnitude of these two sources of error is the core motivator of this
work.

Several studies have used the Fisher Information Matrix (FM), which is only valid in
the large signal-to-noise ratio (SNR) limit, to estimate the measurability of tidal effects
on the CBC gravitational waveform [59-61; 63-66]. Flanagan and Hinderer [59] were
among the first to show that advanced detectors can constrain the tidal influence of NSs
on the early inspiral portion of the CBC waveform. They notably use PN waveforms
truncated at 400 Hz to remove the unreliable high-frequency portion of the PN model.
Hinderer et al. [60] later investigated how well constraints on the tidal deformability from
the early inspiral can discriminate between several theoretical NS EOSs. Also using PN
waveforms, they find that advanced detectors will likely only be able to probe stiff EOSs.

Further FM studies moved away from the use of PN waveforms in favor of waveforms
that are more reliable at high frequencies. Read et al. [61; 63] probed the late inspiral
portion of the BNS waveform with numerical relativity (NR) simulations, which are ac-
curate during the late inspiral and merger epochs. They find that the additional high
frequency information results in greater measurement accuracy of the tidal deformabil-
ity. Damour, Nagar, and Villain [65] also probed beyond the early inspiral with tidally
corrected effective-one-body (EOB) waveforms, which they claim to be accurate up to
merger. They show that advanced detectors should in fact be able to constrain the NS
EOS for reasonably loud signals.

While the above mentioned studies are informative, the FM is not always trustworthy
in estimating the measurability of source parameters [67-70]. Though it is known that
FM estimates are only accurate for loud signals, recent investigations have highlighted
additional shortcomings of FM estimates when compared to real GW parameter estima-
tion pipelines [68]. It is now clear that there is no substitute for full Bayesian results
when making definitive statements regarding parameter estimation.

Del Pozzo et al. [71] recently performed Bayesian simulations of BNS systems with a
tidally corrected PN waveform. They find that advanced detectors will be able to measure
tidal effects on GW signals and constrain the NS EOS by combining information from

many BNS sources. While this result is very important, their analysis assumes that true
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BNS signals have the exact same form as their model. Although the authors acknowledge
this limitation, it is necessary to study how much their result depends on this assumption.

Recently, there have been several FM investigations that have studied the effects of
systematic error on the measurability of tidal parameters [63; 64; 72; 73]. In particular,
Yagi and Yunes in [72] and Favata in [73] both find that current PN waveforms, which
are known only up to 3.5PN order [10], cannot be used to make accurate measurements
of tidal effects. This is an extremely important result that motivates a full Bayesian
investigation into the effect of systematic error from tidally corrected PN waveforms on
parameter estimation.

In this work, we use a full Bayesian framework to demonstrate the ability of advanced
detectors to constrain the NS EOS by measuring the effects of tidal influence on BNS
signals. We estimate the anticipated measurement uncertainty associated with using the
advanced LIGO /Virgo network [52; 74] to recover tidal influence in BNS systems. We find
that systematic error inherent in the current PN inspiral waveform families significantly
biases the recovery of tidal parameters. Additionally, we find that individual instances of
detector noise can on occasion considerably reduce the measurability of tidal parameters.
We consider only BNS systems.

This work is organized as follows. In Sec. 4.2 we review how tidal influences affect
the CBC waveform. In Sec. 4.3 we briefly outline the parameter estimation pipeline used
in this analysis and present measurement uncertainty estimates for the recovery of tidal
influences in BNS systems. In Sec. 4.4 we explain how simultaneous mass-like and radius-
like measurements, specifically the measurement of chirp mass and tidal deformability,
can help constrain the NS EOS. In Sec. 4.5 we describe the two main sources of error
in parameter estimation and how much each source of error affects the recovery of tidal
parameters. We finish with a summary of our main results in Sec. 4.6. We also refer the
interested reader to Appendix 4.A where we derive how the tidal corrections appear in

several PN waveform families.
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In this section, we review the effects of tidal influences on the CBC waveform. For a more
complete discussion, refer to Appendix 4.A, which outlines how tidal effects appear in the
following PN waveform families: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2.

For more details regarding each of these waveform families, see [10] and references therein.

4.2.1 Constructing tidally corrected PN waveforms

To model the CBC waveform, it is customary to approximate each massive body as having
infinitesimal size. As the two bodies orbit, GWs carry energy away from the system
causing their separation to decrease and their orbital frequency to increase. The energy
and luminosity of this point-particle system (E,, and L, respectively) are currently
known to 3.5 post-Newtonian (PN) order? [10].

If the two compact objects are NSs, each will start to deform under the tidal field
of the other as their separation decreases. The deformation of each body will have an
effect on the rate at which the bodies coalesce. BNS systems therefore depart from the
point-particle approximation at high frequencies and require an additional correction to
the energy and luminosity of the system relative to the point-particle terms.

Since a NS in a binary system will deform under the tidal influence of its companion,
its quadrupole moment Q;; must be related to the tidal field &;; caused by its companion.
For a single NS, to leading order in the quasi-stationary approximation and ignoring

resonarmnce,

where A = (2/3)ko R /G parameterizes the amount that a NS deforms [59]. The i and j
are spatial tensor indices, ks is the second Love number, and R is the NS’s radius. Since A
parameterizes the severity of a NS’s deformation under a given tidal field, it must depend
on the NS EOS. NSs with large radii will more easily be deformed by the external tidal
field, because there will be a more extreme gravitational gradient over their radius. For

a fixed mass, NSs with large radii are also referred to as having a stiff EOS, and, for the

2The energy has recently been calculated to 4PN order [75].
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same mass, NSs with small radii have a soft EOS. Therefore, NSs that have large values
of A will have large radii, a stiff EOS, and become severely deformed in BNS systems; on
the other hand, NSs that have small values of A will have small radii, a soft EOS, and
will be less severely deformed in these systems.

Tidal effects are most important at small separations and therefore at high frequencies
in BNS systems. Tidal corrections to the energy 0 E;q. and tidal corrections to the lumi-
nosity dLiqa add linearly to the point-particle energy F,, and luminosity L,,. Though
the leading order tidal correction is a Newtonian effect, it is often referred to as a 5PN
correction, because it appears at 5PN order relative to the leading order point-particle
term. In this work, we keep the leading order (5PN) and next-to-leading order (6PN)

corrections to the energy and luminosity [76]:

0B = —%CQMWL‘ [— (% — 9) ;%f
_ (23_; _ % + %m - 32—3x?) CG_Z%Q;G (1 e 2)] (4.2.2)
O0Ltiga = %0—277%5 [(E — 12) ;%xf’
- (;—:f — % - %Xl L1 2) G—Z%x +(1e— 2)1 - (423)
The total mass is M = mj; 4+ msy, where m; and my are the component masses,

n = mymg/M? is the symmetric mass ratio, © = (TGM fu,/c?)?/? is the PN expan-
sion parameter, fon = 2fop is the GW frequency, fom1, is the binary’s orbital frequency,
and y1 = my/M and xo = my/M are the two mass fractions. Note that the PN order is
labelled by the exponent on x inside the square brackets, which is why these terms are re-
ferred to as 5PN and 6PN corrections. Since the 5PN and 6PN tidal correction coefficients
multiply 2° and 2% respectively, these effects will be insignificant at low frequencies and in-
creasingly more significant at higher frequencies (x ~ for/b ), as anticipated. Appendix 4.A
derives each tidally corrected PN waveform family from Eqs. (4.2.2) and (4.2.3).

The point-particle energy and luminosity are only known to 3.5PN order [10]. How-
ever, we add tidal corrections to the energy and luminosity that appear at 5PN and 6PN
orders without knowing the higher order point-particle terms. The justification for in-

cluding the tidal corrections has typically been that they are always associated with the
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large coefficient GA4[c?/(Gma)])® ~ [*Ra/(Gma)]® ~ 10° [59]. Therefore, although they 73
appear at high PN orders, the effect of the tidal terms on the binary’s orbit are com-
parable to the effects of the 3PN and 3.5PN point-particle terms. However, this claim
was contradicted in [72] because the tidal corrections are actually associated with the
coefficient [2R/(GM)]° ~ 10°> < [c*Ra/(Gma)]?, which is apparent from the form of
Egs. (4.2.2) and (4.2.3). We show in Sec. 4.5.1 that not knowing the higher order PN
point-particle terms leads to significant systematic error when recovering tidal param-
eters. Yagi and Yunes in [72] and Favata in [73] also discuss the importance of these

unknown point-particle terms.

4.2.2 Reparameterization of tidal parameters

It becomes convenient to reparameterize the tidal parameters (A, A2) in terms of purely
dimensionless parameters, which we call (A, 5A) [73]. Inspired by the A from [59], A =
32G\[¢?/(GM)] is essentially the entire 5PN tidal correction in all of the PN waveform
families, while the 6PN tidal correction is a linear combination of A and §A. For example,
the tidal corrections to the TaylorF2 phase later derived in Eq. (4.A.6) of Appendix 4.A

can equivalently be expressed as follows:

3 39 3115~ 6595 5
Oian = ez |\~ ) w7+ (— A V1 —4n dA ) 2® 4.2.4
Piidal 12877355/2[( 5 )x +< o +364 n )x], ( )
where
~ 8 )
A= S [(1+7=310%) (A + Ao)
/T — 4y (1497 — 119%) (A — Az)] (4.2.5)
A 1 13272 8944
N =3 [V L= (1_ 13197 T 1319" ) (A + Ay)
15910 32850 , 3380 ,
’ (1 310" 1310 " " 1310 ) (s A2>} ' (4.2.6)

The dimensionless parameters Ay = GA\[c¢?/(Gmy)]’ and Ay = GAo[c?/(Gmy)]®, and we
have assumed that m; > ms. Though we choose to express A and SA in terms of dimen-
sionless parameters as in Eqgs. (4.2.5) and (4.2.6), they can be equivalently expressed more

compactly in terms of dimensionful parameters, as can be inferred from Eq. (4.A.6). The
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parameters (/~\, 5[\) were chosen such that they have the following convenient properties:

Ap=1/4,Ay =Ay=A) = A (4.2.7)

SA(p=1/4,A, =Ay=A) = 0. (4.2.8)

Setting n = 1/4 implies that m; = my. Since all cold NSs have the same EOS [77],
spherical NSs with the same mass will also have the same value for A. We have over-
specified Eqs. (4.2.7) and (4.2.8) for clarity. We refer to A as the tidal deformability of a
BNS system throughout this work. For more details regarding this reparameterization,

see [73].3

4.3 Measurability of Tidal Influence

In this work, we use lalinference_mcmc to run full Bayesian simulations for
our parameter estimation investigation into the measurability of tidal deformability.
lalinference_mcmc uses an MCMC sampling algorithm to calculate the posterior prob-
ability density function (PDF) of a detected CBC signal. The algorithm is designed to
efficiently explore a multi-dimensional parameter space in such a way that the density of
parameter samples is a good approximation to the underlying posterior distribution. In
this section, we briefly outline the algorithm used by lalinference_mcmc. For a more

comprehensive overview, we refer the reader to Refs. [56-58|.

4.3.1 MCMC overview

A true GW signal will be buried in detector noise. Given a GW detection, the data

stream segment d(¢) will have the following form in the time-domain:

The detector noise is denoted n(t) while the pure GW signal is denoted hgw(t). Since no
GWs have yet been detected by ground-based interferometers, our studies require simu-

lated signals. It is therefore customary to inject a modeled signal with chosen parameters

3Note that, relative to [73], we have pulled out a factor of /T — 47 from our definition of §A to allow
for nonzero values of A when n = 1/4. This distinction enables the MCMC algorithm to fully explore

the §A parameter space even for equal mass systems.
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into synthetic noise.

To determine the physical properties of a CBC system, we seek to map out the func-
tional form of the posterior probability distribution (posterior for short) of its parameters.
Bayes’ theorem relates the posterior p(67 |d, H,T) for a set of waveform parameters ) given
a hypothesis H, any background information Z, and a data stream segment d(t) to the
prior probability distribution (prior for short) and the likelihood p(d ]5, H,T):

—

p(0|H, T)p(d|f, H,T)
p(d[H, )
o p(0|H,T)L(d|f, H,T). (4.3.3)

p(0ld, H,T)

(4.3.2)

The notation p(a|b) means the probability density of a given b. To be more specific, the
hypothesis here represents the waveform model hy. The posterior is then the probability
that the GW source modeled by the waveform hy, that produced the data stream segment
d(t) has the physical properties d. The prior p(§|H, 7) is the a priori probability that the
system modeled by hy has the physical properties g. The prior reflects everything that we
know about the physical properties of any CBC system before attempting to determine the
parameters of a specific source. The evidence p(d|H,Z) is the probability of observing the
data stream segment d(t) with the model hy. The evidence is a normalization factor that
can be used to compare how well different models would produce the data. The likelihood
L(d|f,H,T) = p(d|f, H,T) is the probability of observing the data stream segment d(t)
assuming the system that produced it is modeled by hy and has the physical properties
g. The likelihood is a measure of how well the model hy with parameters 6 matches the
data stream segment d(t). Assuming the noise is stationary and Gaussian, the functional

form of the likelihood when using a single detector n is [16; 78]

~ 12

d(f) — ha(f,0)
Su(f)

L,(d|6,H,T) x exp —2/ daf | . (4.3.4)
0

Sn(f) is the one-sided noise power spectral density (PSD), d,,(f) is the Fourier transform
of the detector data stream segment, and iLH( f, 5) is a frequency-domain model for the

waveform. When using a network of GW detectors, the posterior probability becomes

p(0ld. H,T) o p(A|H,T) [ | £.(d|0, M. T). (4.3.5)
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tion p(é]d,H,I). The samples can be binned to produce a histogram of the full multi-
dimensional posterior distribution. Posterior PDF's of fewer dimensions can be produced
by marginalizing the full posterior over parameters that are not of interest. For example,
a 1D PDF for the tidal deformability A can be found by integrating the posterior over
all the other parameters:

p(Ad, H, T) = / p(01d, H, T)dBoyner, (43.6)

other
where gother are all the parameters in the set 0 except A. However, since the MCMC
samples follow the posterior distribution, this integral is easily solved by simply binning
only the parameters of interest (in this case A).
Various aspects of this algorithm have been fine-tuned to optimize speed and robust-
ness and are outlined in Ref. [79]. This section is meant to merely provide an adequate
overview of the parameter estimation pipeline used in this work. We refer the interested

reader to the following sources for more details [56-58].

4.3.2 Models, Parameters, and Priors

Eq. (4.3.3) is used to calculate the posterior p(g\d, H,Z), which is the quantity of inter-
est, from the prior p(§|H,I) and likelihood L(d|§, H,Z). It depends on a model hy, the
model source parameters 5, and the prior distribution of each parameter. The waveform
models used in this work are the following tidally corrected PN waveform families, which
we outline in Appendix 4.A: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2. To
focus on purely EOS effects, we consider non-spinning BNS systems with no amplitude
corrections. (Parameter estimation can be just as easily performed with spinning wave-
forms, though slightly larger uncertainties in A may arise for NSs with significant spins.)

These assumptions lead to the following 11-dimensional parameter space:
5: {MC7Qa]\75]\7 D7 L7O[,5, ¢ref;tref7¢}- (437)

These parameters are: the chirp mass M, = 1%°M, the mass ratio ¢ = my/m; where

my > mg, the distance to the binary D, the angle between the line of sight and the orbital
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axis ¢, the right ascension and declination of the binary « and d§, the GW’s polarization
angle ¢, and the arbitrary reference phase and time ¢ and t.s. Since A; and A, are
highly correlated, we choose to parameterize in terms of A and §A. It is known that A is
comparatively more measurable than A; and A, individually [59; 60]. We use a uniform
prior distribution in component masses between 1 M, < my < m; < 30 My, a uniform
prior distribution in volume to D < 200 Mpc?, an isotropic prior distribution in sky
location («, d) and emission direction (¢, ¢), a uniform prior distribution in polarization
angle 1, and a uniform prior distribution in ¢, over the data stream segment. We use a
uniform prior distribution in A between 0 < A < 3000 and a uniform prior distribution
in 6A between —500 < A < 500. These ranges were chosen to include effects from the
majority of possible NS EOSs.?

Since we are concerned only with measuring EOS effects on BNS signals, we fixed all
the injected signals to have the exact same sky position (« = 0.648522 and 6 = 0.5747465),
orientation (¢ = 0.7240786), and polarization (1) = 2.228162) for comparison purposes.
We vary the strength of injected signals by adjusting D. We also use a 3-detector advanced
LIGO/Virgo network. We use the PSD of the two advanced LIGO detectors under the
zero-detuned high power configuration [81] and the parameterized advanced Virgo PSD
based on Eq. 6 of [82]. Injection and template waveforms all have a low frequency cutoff
at fiow = 30 Hz and end when the system reaches fuign = fisco = ¢*/(6%/27G M), where
fisco is the GW frequency of the innermost stable circular orbit (ISCO) of a test particle
about a Schwarzschild BH of mass M.

The abrupt termination of waveforms at fisco is not ideal for parameter estimation.
True gravitational waveforms do not abruptly end at fisco or any such artificial frequency

cutoff. Recent work [83] has shown that the abrupt termination of frequency-domain

40ut to this distance, cosmological redshift is negligible, so we assume the intrinsic frequency of the
signal is the same as the observed frequency at the detector. If we were to consider sources out to a
greater distance, cosmological redshift would be an additional parameter that is necessary to deduce the

true values of the component masses and the equation of state parameters [80].
5Note that A may exceed 3000 for low mass NSs with a stiff EOS. However, this upper bound does not

affect the results in this chapter, because the posterior is found to be fully contained within the region

of prior support for all cases considered.

www.manaraa.com



78

waveforms contains additional information that can artificially improve parameter esti-
mation. For instance, since fisco depends on the total mass of the system, abruptly
ending waveforms at this frequency can reveal more information about a system’s mass
than is available in practice. We ran tests with template waveforms that were all ter-
minated at an identical fixed frequency cutoff, which had no dependence on the model
parameters, to eliminate any information in our waveforms’ abrupt frequency cutoff. We
found that our results did not change in any noticeable way, which is expected since
fisco for BNS systems is effectively above our detectors’ sensitive frequency band [83].
In addition to the effects of abrupt waveform termination, a given BNS system may have
an fisco that is greater than the frequency at which the two stars come into contact,
which suggests using a lower frequency cutoff for such systems. However, only a few of
the systems considered in this work have feonact < fisco, and we found that this effect
only reduces the measurability of tidal parameters for these systems by roughly 5% or

less.

4.3.3 Measurability of Tidal Deformability

In order to simulate the parameter estimation of a GW signal, one typically injects a
model waveform into a data stream segment consisting of simulated detector noise. The
strength of the injected signal relative to the detector noise is characterized by the SNR.

The SNR p,, of an injection into a single GW detector n is

|n(f,0)|?
\/ / R (4.3.8)

where i~z( f,0) is the injected waveform model in the frequency domain. For a collection

of detectors, the network SNR, pye is defined to be

Pres = ([ D P (4.3.9)

We report on the optimal measurability of tidal influences in BNS systems assuming
a 3-detector LIGO/Virgo network. We follow a similar procedure to the one used in
[84], which details the statistical uncertainties in the mass parameters and sky location

parameters of BNS systems that are expected to be achieved with advanced detectors.
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While one typically injects a signal into synthetic noise, we sometimes choose not to add 7
synthetic noise to our injected signal, which essentially means that we set n(t) = 0 in
Eq. (4.3.1). However, we still calculate the likelihood and the network SNR by dividing

by the detector PSD, which is the variance of the noise. In this way, we incorporate the
overall effect of noise without dealing with the statistical fluctuations of individual noise
realizations. We refer to this procedure as “injecting into zero-noise” [84].

We inject into zero-noise for two reasons. The first reason is to report measurement
uncertainties for typical systems. However, individual results depend on individual real-
izations of the noise at the time of detection. It is shown in [85] that their “averaged”
posterior PDF, or more precisely the prior distribution multiplied by a likelihood that is
geometrically averaged over a large number of noise realizations, is recovered by setting
the noise to zero. We can therefore estimate the most probable measurement uncertainty
of tidal parameters by simply injecting that signal into zero-noise [68; 84-86]. This saves
us from having to perform many MCMC simulations with different noise realizations.
While this approach only considers the overall effect of noise, we discuss the effect of
individual noise realizations in Sec. 4.5.2. The second reason for injecting into zero-noise,
which we use in Sec. 4.5.1, is to isolate the effects of systematic error in our analysis. By
injecting into zero-noise, we are able to disentangle modeling bias from noise realization
effects without having to perform many MCMC simulations, which are computationally
expensive [87].

In Fig. 17, we present the 1D and 2D posterior PDFs for A and §A of a typical BNS
system. The true signal was injected with pn¢ = 32.4, which is considered very large
(perhaps a one-per-year event by 2019 [8]). We use tidally corrected TaylorF2 waveforms
for the injected waveform as well as for the recovery template waveforms. The injection
has the following properties: m; = my = 1.35 My, A = 590.944, and §A = 0, which is
consistent with the MPA1 EOS model® [1]. We find that the injected value of A is well

6We actually use the parameterized EOS presented in [1] that matches the theoretical MPA1 EOS,
as well as many other theoretical EOSs, to a few percent. This approximation is used throughout this
work for our convenience. Since the EOS is only used to estimate injected A values, our results will not

be affected by this approximation.
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Figure 17 : Marginalized 1D (left and middle) and 2D (right) posterior probability density functions for
A and JA of a 1.35 My:1.35 My BNS system with pyet = 32.4. The shaded regions in the 1D PDFs
enclose 20 (95%) confidence regions. The color bar in the 2D PDF labels the (unnormalized) probability
density. The injected values for A and §A are consistent with the MPA1 EOS model [1] and are marked
with straight dashed lines. These plots are PDFs smoothed with a Gaussian kernel density estimator.
For these results, we injected into zero-noise (see Sec. 4.3.3).

recovered.” However, advanced detectors are not able to discern §A contributions to the
waveform even at a network SNR of 32.4. This is expected because §A only shows up
in the 6PN tidal correction, which is O(10%) as big as the 5PN term, and additionally
contributes little to the 6PN correction since §A/A ~ 0-0.01 [73].

In Table 1 we outline the measurement uncertainties for the tidal deformability pa-
rameter A for several equal mass and unequal mass BNS systems. We compute the 1o
and 20 measurement uncertainty interval by determining the smallest interval in A that
contains 68% and 95% of the total marginalized posterior probability. We then report
the lower and upper bound on this confidence interval. The 1o confidence interval for
a 1.35 Mg:1.35 Mg BNS system consistent with the MPA1 EOS model is (382.0,636.7)
for pret = 30. We find that the measurability of the other parameters are not noticeably
affected by including tidal parameters in our analysis.

We can also compare our MCMC results to a few FM results. The FM study by
Favata [73] uses tidally corrected PN waveforms with a high frequency cutoff of 1000 Hz.
Favata finds the 1o measurement uncertainty of the tidal deformability parameter to be
roughly 27% for a 1.40 M:1.40 M, BNS system with A ~ 600 at an SNR of 30. Damour,

Nagar, and Villain [65] use tidally corrected EOB waveforms that end at contact. In their

"The peak of the 1D PDF for A is consistently found to be displaced from the injected value for equal
mass and near equal mass systems. This is a result of marginalizing over the other ten parameters [84],

in particular the mass ratio ¢, whose prior distribution caps off at ¢ = my/m; = 1.
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Table 1: The 1o (68%) and 20 (95%) confidence intervals (min,max) for A. The BNS systems considered

are labeled by their injected masses (in units of solar mass) and tidal deformability A. Both equal mass
and unequal mass systems ranging from mpyi, = 1.20 Mg to mpmax = 2.10 Mg are considered. The
injected values for A are consistent with the MPA1 EOS model [1]. We report confidence intervals for
systems with a pnet of both 20 and 30. For these results, we injected into zero-noise (see Section 4.3.3).

Pnet = 20 Pnet = 30

m Mo A lo 20 lo 20

1.20 1.20 1135.630 (553.8 , 1258.1) (134.6 , 1700.1) (838.7 , 1193.8) (516.6 , 1359.4)
1.35 1.35 590.944 (251.3 , 690.2) ( 60.7 , 963.0) (382.0 , 636.7) (182.3 , 750.8)
1.50 1.50 318.786 (113.2 , 398.9) ( 22.9 , 576.8) (162.1 , 357.4) ( 63.9 , 447.7)
1.65 1.65 175.963 ( 54.5 , 250.2) ( 9.6 , 377.2) ( 63.5 , 213.9) ( 14.0 , 290.8)
1.80 1.80 98.191 ( 29.2 , 176.8) ( 4.9, 274.9) ( 289, 136.1) ( 5.0, 196.8)
1.95 1.95 54.670 ( 20.1 , 132.5) ( 3.5, 214.4) ( 16.6 , 96.1) ( 2.6 , 148.2)
210 2.10 29.844 ( 14.8, 104.8) ( 2.1, 1744) ( 11.7, 74.0) ( 1.9, 118.6)
1.35 1.20 820.610 (433.7 , 1017.6) (102.7 , 1381.7) (612.9 , 941.3) (340.7 , 1094.6)
1.35 1.50 435.585 (200.0 , 574.9) ( 44.4 , 814.5) (282.5 , 518.0) (125.5 , 626.1)
1.35 1.65 328.177 (196.1 , 570.5) ( 45.5 , 834.6) (221.3 , 495.9) ( 85.5 , 619.1)
1.35 1.80 252.398 (155.1 , 593.1) ( 33.0 , 907.0) (155.9 , 433.5) ( 45.5 , 598.6)
1.35 1.95 197.899 (119.0 , 546.9) ( 21.5 , 922.6) (107.3 , 348.2) ( 24.7 , 489.1)
1.35 2.10 157.974 ( 90.7 , 4454) ( 15.8 , 819.9) ( 79.3 , 296.8) ( 16.2 , 424.9)

FM study, they find a slightly better measurement uncertainty of roughly 21% for a 1.40
M:1.40 Mg, BNS system with A &~ 600 at an SNR of 30.8 This improvement is likely
due to the extra high frequency information included in the EOB waveforms. Read et
al. [63] use NR waveforms in their FM study, though they rely on a somewhat crude
finite difference approximation. For a 1.35 Mg:1.35 Mg BNS system with A ~ 600 at
an SNR of 30, they find a measurement uncertainty of roughly 16% with full hybrid

waveforms, though they do not consider correlations with other parameters.” Again, the

8Since [65] does not include the measurement uncertainty of a BNS system with A =~ 600, this

measurement uncertainty was estimated via interpolation.
9The finite difference approximation is between the EOS H and HB: o5 = (Ag — Aug)/||hu — husl| =

85, which results in a measurement uncertainty of o3/ Ay = 0.16 when scaled to an SNR of 30.
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slight increase in measurability is likely due to the additional high frequency information 82

included in their waveforms. In our MCMC study, we find the measurement uncertainty
of the tidal deformability parameter to be roughly 21% for a 1.35 M4:1.35 My BNS
system with A ~ 600 at an SNR of 30 in a single advanced LIGO detector. This is in

general agreement with existing FM calculations.

4.4 Constraining NS EOS

The NS EOS describes the structure of all cold NSs in equilibrium by relating NS state
variables, such as pressure and density. Simultaneous NS mass-radius measurements, or
equivalently mass-\ measurements, can highly constrain the NS EOS [88-90]. While many
accurate NS mass measurements have been made, corresponding radius measurements are
still needed [91].

While Ay ~ (Ry/m;)? and Ay ~ (Ry/m3)® are poorly measured by advanced GW
detectors due to their strong correlation, the tidal deformability parameter A, which is
a linear combination of (A1, Ay), is better measured. Ground-based interferometers are
most adept at measuring a system’s chirp mass M.. In the same way that a binary’s
chirp mass is a mass-like parameter that contains information about the mass of both
components, the fifth root of the tidal deformability parameter A/® can be thought of
as a dimensionless radius-like parameter that contains information about the radius of
both components. While GW detectors may not be able to simultaneously constrain the
mass and radius of individual NS’s, we show that they can simultaneously constrain the
mass-like and radius-like parameters describing the binary system as a whole. To further
this analogy, we choose to define a conveniently scaled dimensionful radius-like parameter
Re = 2GM A5/, which we call the binary’s chirp radius. Therefore, making a M,
R. measurement of a CBC system is analogous to making a mass—radius measurement
of a single NS star. Note that the component masses and radii are entangled in the
former case and are only determined in combination. The question then becomes: “Does
measuring the chirp mass and the chirp radius as opposed to the individual mass and
individual radius contain enough information to constrain the NS EOS?”

In Fig. 18, we take a mass-radius plot with multiple theoretical EOS curves [1] (upper
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left) and transform it into a M.~R. plot with the same EOS curves, now smeared out due
to the extra degrees of freedom from not specifying individual masses and radii (upper
right). The three horizontal, black lines are the 1o confidence regions of three recovered
injections. Because chirp mass is so well measured, these confidence regions appear to be
lines due to the aspect ratio of this plot. The three bottom plots in Fig. 18 are zoomed-in
plots of each recovered injection. From left to right, the important parameters for each
injection are: m; = my = 1.50 Mg and A=A = Ay = 318.786, m; = mo = 1.35 Mg
and A = Ay = Ay = 590.944, and my = my = 1.20 Mg and A = A; = A, = 1135.63. The
injections all correspond to the EOS MPA1 [1] and have ppe = 30. Fig. 18 demonstrates
that simultaneous M.~R. measurements can indeed constrain the NS EOS. However,
because certain regions of parameter space can be described by overlapping EOS curves,
BNS observations with varying values for chirp mass will likely need to be observed before
tight constraints on the NS EOS can be made with this approach.

This inversion of M.—R. measurements to EOS constraints is similar to the inverse
stellar structure problem described in [88-90]. Other methods for constraining the NS
EOS with GW detectors are discussed in Sec. 4.6.

4.5 Sources of Error

Sources of error in estimating the parameters of a CBC system given its gravitational
signal can be categorized as statistical and/or systematic. Statistical error is due to the
presence of random detector noise. In Sec. 4.3.3, we focused on the overall effect of
detector noise. In this section, our focus is on the effect of individual noise realizations.
The kind of systematic error that we are studying arises because our template waveforms
only approximate true signals. Statistical error is SNR-dependent, since it depends on
the relative strength of the signal to the detector noise, while systematic error is SNR-
independent. In this section, we present the effects of both systematic error and individual
noise realizations on the ability of advanced ground-based interferometers to measure tidal

deformability.
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Figure 18 : NS mass-radius plot for a sample of NS EOS models found in the literature [1] (top left).
The M.—R. plot (top right), where R, is defined in Sec. 4.4, depicts the same EOSs as the mass-radius
plot now smeared out due to the extra degrees of freedom from not specifying individual masses and
radii. We consider NSs with masses that range from 1 Mg to the maximum allowed mass for each EOS.
The three horizontal, black lines are the 1o (68%) confidence regions of three recovered injections. The
three bottom plots are zoomed-in to show these recovered injections more clearly. The injected values
for M. and R. are consistent with the MPA1 EOS model and are marked with straight, dashed lines.
For these results, we injected into zero-noise (see Sec. 4.3.3).

4.5.1 Systematic Error

The PN approximation to the energy and luminosity of a CBC system is an expan-
sion of the equations of motion about small characteristic velocities, or small frequencies
(v~ glv/v3). Currently, the point-particle corrections to the CBC energy and luminosity
are known to 3.5PN order [10]. While PN waveforms match a true GW signal at small
frequencies, they are unreliable at high frequencies. Since tidal influences become signif-
icant at high frequencies, it is expected that the systematic error from having unreliable
waveforms at high frequencies will bias the recovery of tidal parameters. The question is:

“By how much?”

We expect that the deviation of PN waveform families away from the true CBC

waveform will be comparable to the amount that they deviate away from each other.

SR fyl_i.lsl
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All of the PN waveform families are accurate to the same PN order but differ from one
another at higher orders. We use the fact that we cannot say which PN family is more
accurate as a simple way to parameterize our ignorance of unknown higher order PN
terms. We test systematic bias by injecting one PN waveform family and recovering with
another. Because all PN waveform families are considered viable, this gives at least a
lower bound on the systematic error due to modeling bias. In this way, we can get an
order of magnitude estimate of the systematic bias that results from using waveforms
that are unreliable at high frequencies to estimate tidal parameters whose effects arise at
high frequencies.

In Fig. 19, we present example 1D posterior PDFs for A. We inject signals from
each of the five PN waveform families derived in Appendix 4.A but only recover with
TaylorF2 templates. Since injected waveforms are only generated once while template
waveforms are generated millions of times during an MCMC run, we only use TaylorF2
templates, because they are generated much faster than the other PN waveform families.
The injected component masses are labeled in each figure’s title, while the injected value
of A, which is consistent with the EOS labeled in the legend, is marked by a dashed,
vertical line. Each injection has a network SNR of 32.4 and was injected into zero-noise
in order to isolate systematic error from statistical error. (Remember that the effects of
noise are not completely ignored by injecting into zero-noise. The PSD is still used to
calculate likelihood and network SNR.) While we only present three mass combinations
and one EOS model in Fig. 19, we also find similar results when considering several other
equal and unequal mass combinations and EOS models.

We find that systematic error can be significant in each of the mass combinations
and EOSs considered. In particular, the TaylorT4 waveform family has been found to be
remarkably similar to equal mass numerical relativity (NR) waveforms [92]. Therefore, for
a typical m; = my = 1.35 My BNS system with a moderate EOS, say MPA1, systematic
error will likely bias the maximum likelihood recovery of A by (Amj - Arec) / /~\inj ~50%.

It is also interesting to note that the TaylorT3 injected waveforms are all recovered
with little to no tidal contribution with TaylorF2 templates. Additionally, the TaylorT3

injected waveforms were recovered with a chirp mass bias of roughly twice its standard
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Figure 19 : Marginalized 1D posterior probability density functions for A of three BNS systems (labelled
by the masses in the title) each with pper = 32.4. The injected A values are consistent with the MPA1
EOS model [1] and are marked with straight, dashed lines. These plots are PDFs smoothed with a
Gaussian kernel density estimator. To generate a single plot, we inject BNS signals modeled by each of
the five PN waveform families derived in Appendix 4.A. Though the waveform family for each signal
is different, the injected waveform parameters are identical. The five PDFs, which are labelled by the
injected waveform family, are all recovered using TaylorF2 waveform templates. The deviation of each
peak away from the injected value is due to the systematic error in the PN waveform approximants. For
these results, we injected into zero-noise (see Sec. 4.3.3).

deviation, whereas none of the other injected waveforms were recovered with noticeable
bias in chirp mass. It was previously seen in [10] that the TaylorT3 approximant agrees
poorly with other PN approximants due to its peculiar termination conditions, and we

suspect this also explains the biases seen here.

4.5.2 Noise Realizations

Statistical error is due to random fluctuations in detector noise. In Sec. 4.3.3, all signals
were injected into zero-noise, which gives the posterior averaged over noise realizations
[85]. However, to get an understanding of how much a particular instance of noise can
affect parameter recovery, we inject the same signal into ten different synthetic noise
realizations (Fig. 20). Here, both the injected waveform model and the recovery waveform
model is TaylorF2, and each injection has p,e = 32.4.

We find that the measurability of A can vary dramatically from one instance of noise
to the next. A few out of the ten PDFs plotted in Fig. 20 have significantly broadened
peaks, and some even inherit strange multimodal behavior. Therefore, even though the
true parameter value still lies within the 90% confidence interval 90% of the time (as
expected [67]), statistical error occasionally acts to significantly reduce the measurability

of A. Unfortunately some BNS detections may provide uninformative tidal deformability
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Figure 20 : Marginalized 1D posterior probability density functions for A of three BNS systems (labelled
by the masses in the title) each with pne = 32.4 (bottom). The injected A values are consistent with
the MPA1 EOS model [1] and are marked with straight, dashed lines. These plots are PDFs smoothed
with a Gaussian kernel density estimator. To generate a single plot, we inject the same BNS signal
into ten different noise realizations. The deviation of each peak away from the injected value is due to
the statistical error from the presence of random detector noise. Each PDF has an associated box-and-
whisker representation (top), where the edges of each box mark the first and third quartile, the band
inside each box is the median, and the end of the whiskers span the 90% confidence interval.

estimates due to random detector noise. Multiple detections might need to be combined

to overcome the effects of noise, which was successfully shown in [71].

4.6 Conclusion/Discussion

In Sec. 4.3.3, we have shown with full Bayesian simulations that tidal deformability in
BNS systems is measurable with the advanced LIGO/Virgo network (see Table 1). This
is in general agreement with FM studies [63; 65; 73] and compliments the Bayesian
results shown in [71]. For a canonical 1.35 M4:1.35 M BNS system with the moderate
EOS MPAT1 recovered using the advanced LIGO/Virgo network, we find that the lo
measurement uncertainty of A (or the radius-like A'/%) will likely be ~40% (~8%) for a
source with pney = 20 and ~20% (~4%) for a source with p,e = 30.

We showed in Sec. 4.4 how simultaneous measurements of A and chirp mass can be
used to constrain the NS EOS. Other studies in constraining the NS EOS with future
GW observations include work by Del Pozzo et al. [71], in which Bayesian simulations
are used to incorporate information from tens of detections to discriminate between stiff,

moderate, and soft EOSs. While Del Pozzo et al. showed that tens of BNS sources can
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constrain A for a 1.4 My NS, which can then be used to constrain the NS EOS, it might 88
even be possible to constrain the full form of the NS EOS over all masses.

In the work presented here, we have examined the ability of GW detectors to measure
the tidal parameters A and §A. The main quantity of interest, however, is the universal
EOS that is common to all NSs. One method to measure the EOS is to construct a
parameterized EOS (e.g. [1; 93; 94]), then replace the tidal parameters in the waveform
with EOS parameters. This method allows one to use physical and astrophysical infor-
mation to place tighter constraints on the priors for the EOS parameters in contrast to
the less physically motivated priors on A and §A. Additionally, this allows for combining
information from several BNS sources to more tightly constrain EOS parameters. This
approach can be found in Ref. [95] and is the topic of Ch. 5.

Both systematic error and individual noise realizations have been shown to signif-
icantly affect the measurement of tidal deformability. Individual instances of detector
noise can severely broaden the peaks of the marginalized A posteriors, but can be over-
come by combining information from multiple sources, which averages out the effects of
noise. This would require many (~20) BNS detections [71], instead of just a few loud
signals. Both optimistic and realistic estimates for the BNS detection rate predict that
it will take less than a year after reaching design sensitivity (~2019) to constrain the
NS EOS with GW signals. However, according to pessimistic estimates, this may take
considerably longer [53]. Systematic error, which can significantly bias the recovered pa-
rameters, is overcome by improving current waveforms. Higher order point-particle terms
would be required in order to trust PN waveform families at frequencies sufficiently high
to recover tidal deformability. However hybrid waveforms, which are PN waveforms at
low frequencies stitched to NR waveforms at high frequency, or phenomenological wave-
forms, which are waveforms fitted to NR, will likely be required to reliably capture high
frequency effects, such as tidal deformability [61; 63; 64; 96]. We hope that these re-
sults motivate the importance of prioritizing waveform development that incorporates

NS matter effects.
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Appendix 4.A Tidally corrected PN waveform derivations 89

We now adopt units where G = ¢ = 1. The equations that describe the CBC orbital

phase evolution are the following:

do v3

dv dvdE —L

- = = __= 4.A.2
dt dE dt E"’ ( )

where ¢ is the binary’s orbital phase, t is time, the prime represents a derivative with
respect to v, and the requirement for energy balance is dF/dt = —L. Integrating

Egs. (4.A.1) and (4.A.2) give the alternate form:

Ho) =t + / " lz/((s))du (4.A.3)
$(v) = e + Urefuﬂg)]i((s))du, (4.A.4)

where trer = t(Uref), Grot = P(Urer), and vy is an arbitrary reference velocity, following
[10]. Solutions for ¢(t) and v(t) fully determine a non-spinning CBC waveform with

polarizations that go like

hy(t) oc v*cos2¢

hy(t) o< v*sin2¢.

Because there are several ways to solve for the orbital phase starting with the same
energy and luminosity inputs, there are several different PN waveform families. These PN
families are equivalent up to unknown truncation terms at the next PN order. We briefly
outline each waveform family below and point out how tidal corrections are incorporated
in their derivation. See [10] for the point-particle terms for each waveform family and

details regarding initial conditions.

4.A.1 TaylorT1

The TaylorT1 approximant is achieved by numerically solving Egs. (4.A.1) and (4.A.2) for

¢(t) and v(t). Tidal corrections enter through the energy derivative E’ and the luminosity
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E(’U) = Epp + éEtidal
E'(v) = E,+0E4.

L(U) — Lpp+5Ltidal7

where 0 Eiqa and 0 Liqa come from Eqs. (4.2.2) and (4.2.3) respectively.

4.A.2 TaylorT2

The TaylorT2 approximant is achieved by solving Eqgs. (4.A.3) and (4.A.4). First, the
ratio F’/L is expanded about v = 0 to consistent PN order, then the result is analytically
integrated to find ¢(v) and ¢(v). Tidal corrections enter through the energy derivative E’
and the luminosity L and appear at 5PN and 6PN order in t(v) and ¢(v):

1 72 Al s
dbtidar(V) = _W {(z — 66> Wﬂ:
<15895 _ 4595 5715 325 2> A1

2° 4+ (1 2)}

56y 56 28 T 1N s
5M 288 A s
Otyiqa(v) = 356yt [(; — 264) ST

4X1 4 2

(3179 919 1143

A
X1+ 65)&) MEQZG + (1 — 2)} .

Here, z = v? = (7M fq)?? is the PN expansion parameter. The tidal corrections add

linearly to the point-particle terms:

p(v) = Gpp(v) + dsidar(v)

t(”U) = tpp(v)""dttidal(v)'

These parametric equations are then solved numerically to obtain ¢(t) and v(t).

4.A.3 TaylorT3

The TaylorT3 approximant starts by following the TaylorT2 approach. After ¢(v) and

¢(v) are found, the following reparameterization is used:

ol LAl Zyl_i.lbl

o) = [0,
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Next, v(#) is found to consistent PN order via reversion of the power series. The charac- 91

teristic velocity v(#) can then be used to find the 5PN and 6PN tidal corrections to the
phase ¢(0) = ¢(v(0)) as well as the 5PN and 6PN tidal corrections to the GW frequency

fow = 0*/(wM):

(22293337265x1 - 1;32226 - 577238454X1 - ﬁiiigx%) %9” He— 2)}
<13118047523><1 " 6575936 B é§g§2X1 * 210_118X3> %912 +(1e— 2)1 :

The tidal corrections add linearly to the point-particle terms:

¢(0) = ¢pp(0)+5¢tidal(0)
fgw(g) = fgW,pp(9)+6fgw,tidal(9)-

These equations are essentially the equations for ¢(t) = ¢(0(t)) and o(t) =
(M f (0(2))]/°.

4.A.4 TaylorT4

The TaylorT4 approximant is achieved by numerically solving Eqgs. (4.A.1) and (4.A.2)
for ¢(t) and v(t) after first expanding the ratio E’/L about v = 0 to consistent PN order.
The 5PN and 6PN tidal corrections are:

32 72 A
OVtidal = 2L por {(— — 66) ALIPV

(4421 12263 1893 661 ,

— — 1le—2
56X1 56 + 4 X1 2 Xl) M5x + ( ) )

where the dot represents a derivative with respect to t. The tidal corrections add linearly

to the point-particle terms:

(V) = Vpp (V) + 6V4iqar (V).

ol L) fyl_i.lsl
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4.A.5 TaylorF2 92

The CBC gravitational waveform can also be derived in the frequency domain using the

stationary phase approximation. The waveform takes the form

ib(fgvv) = A(fgw) exp [iY(faw)]

where Y( faw) = 27 fowt(v) — 2¢(v) — 7 /4. Substituting Eqs. (4.A.3) and (4.A.4) for ¢ and
¢ into v yields:

B m vref 3 — 43 B’ (u)
¢(fgw) - 27ngwtref - 2Qbref - Z + 2/1; Wi L('U,) du. (4A5)

The tidal corrections are found by expanding the ratio E’/L about v = 0 to consistent

PN order and integrating the expression in Eq. (4.A.5). By choosing to neglect amplitude

corrections, the waveform becomes:

h(f) = AfalS exp [iv( fow)]

where A oc M2/° /D. The chirp mass M. = *°M, and D is the distance between the

GW detector and the binary. The 5PN and 6PN tidal corrections are:

3 288 A
(51/}tidal — W [— (; - 264) WCC
15805 4595 5715 325 ,\ A
- S U2 Sl (1 e 2)| . (4A6
(28X1 8 14 VT Xl) s |- (AS)

The tidal corrections add linearly to the point-particle terms:

Y(v) = Ypp(v) + 0tidal(v).

The TaylorF2 waveform is one of the most utilized CBC waveforms because its fully

analytic frequency-domain form makes it the fastest PN waveform to generate.
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Chapter 5

Reconstructing the neutron-star
equation of state with
gravitational-wave detectors from a

realistic population of inspiralling

binary neutron stars!

5.1 Introduction

In Sec. 4.4, we presented a method for constraining the NS EOS by measuring allowed
areas in chirp mass — chirp radius space and excluding candidate EOSs that do not
pass inside that area. In this chapter, we introduce an alternate approach that seeks to
directly measure the NS EOS. We do this by parameterizing the NS EOS and measuring
the parameters of this model. This novel approach allows for straightforward inclusion
of physical and observationally motivated priors on the NS EOS; including causality and
measurements of massive NSs, and any a priori information about the functional form
of the EOS in general. Additionally, since all NSs share the same EOS, we can combine

information from multiple observations into a single constraint of the NS EOS.

!This chapter is based entirely off of the work published in Ref. [95].
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We organize this chapter as follows. In Sec. 5.2, we describe the known properties of 94
the NS EOS and outline the parameterization that we use for EOS measurements. Then
we discuss our 2-stage Bayesian parameter estimation approach in Sec. 5.3. In Sec. 5.4,
we present results from a comprehensive study over a range of observation scenarios using
a simulated BNS population and review the effect of error on our analysis. We finish with

a discussion on our findings in Sec. 5.5.

5.2 The EOS

As with any equation of state, the NS EOS is a relationship that describes the properties
of NS matter under certain physical conditions. More specifically, it is an equation that
relates state variables, typically pressure p and energy density €, to one another. Finding
this relationship EOS(p,e) = 0 for NS matter has proven difficult because replicating
such densities while remaining in equilibrium ground state has so far been unachievable
in laboratories on Earth. Therefore the NS EOS is still highly unconstrained today.

In a standard analysis, an EOS would be used to predict the observable parameters
of NSs, which include mass, radius, tidal deformability, etc. Much literature has been
devoted to developing candidate theoretical EOS models that describe NS matter. The
predictions of observable parameters based on candidate EOSs can then be compared to
observations and tested for consistency. For instance, it has been shown that the NS EOS,
which is often expressed as p(¢), can be directly calculated from the relationship between
NS masses and radii 7(m) (as well as mass and tidal deformability A(m)) [97]. However,
since simultaneous measurements of mass and radius for a given NS have historically been
difficult to obtain [98], the most successful attempts at constraining the NS EOS come
from precise mass measurements of the heaviest NSs observed. With such measurements,
any theoretical candidate EOS model whose r(m) form does not support NSs at such
high masses can be eliminated from contention.

However, there is an alternative approach to finding the EOS. Instead of relying on
a wide variety of candidate EOSs to contain the true NS EOS and ruling out candidates
until only the true EOS is left, one could instead model the NS EOS incorporating what

little is actually known about the EOS while also leaving free parameters that represent
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our lack of knowledge of the EOS. The parameters of this model can then be constrained 95
observationally to directly measure the NS EOS. The advantage of such an approach is
that it does not rely on the production of candidate EOSs; the disadvantage is that any
EOS measurement is inherently model-dependent. Therefore, your model should be able
to span all possible unconstrained EOS candidates without incorporating too many free
parameters.

While the NS EOS is highly unconstrained, there are still a few things that are known

about its form:
1. The EOS is known below a certain density py.
2. The EOS p(e) must be a monotonically increasing function.
3. The speed of light must be greater than the speed of sound at all densities.
4. The EOS must support all observed NS masses.

We consider these to be a priori constraints on the EOS and use this information in our
model and our analysis. Therefore, we seek a parameterized model that not only follows
these rules but also has enough flexibility to match the true NS EOS, whatever it might
be. While the literature provides several adequate EOS representations, for this first
analysis, we choose to employ the 4-piece polytropic parameterization of [99] due to its
frequent use in gravitational-wave literature.

The 4-piece polytropic parameterization is constructed as follows. Four polytropic

segments
plp) = Kip"", (5.2.1)

are continuously stitched together to form our model. Here p is the pressure, K is a
polytropic constant, p is the rest-mass density, and I' is an adiabatic index. Note that
since the energy density is a function of the rest-mass density € = €(p), the EOS p(e)
is equivalently represented as a function of the rest-mass density p(p) = p(e(p)). The
NS core is represented by three polytropes joined together at the two fixed dividing

014.7

densities p; = 1 g/cm?® and py = 10" g/cm?. The lower density crust is modeled by

a fourth fixed polytrope that is fitted to the Sly EOS [99]. The point at which the lowest
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Figure 21 : Depiction of 4-piece polytropic EOS model from Ref. [1] used as our NS EOS model. The
leftmost polytrope is fitted to the SLy candidate EOS and represents the fixed crust. The next three
polytropes have adiabatic indexes I'y, I's, I's, and are stitched together at the densities p; and po
represented by vertical gray lines. The pressure p; at which the middle two polytropes are joined sets

the pressure scaling.

density polytrope describing the core is joined to this fixed crust polytrope is determined
by the overall pressure scaling, which is controlled by the pressure at the first joining
density p; = p(p1). This results in a 4-piece polytropic EOS model with four independent
parameters Opos = {log(p1), 1, T2, T3} (Fig. 21). This model has been shown to match
a wide range of candidate EOSs to a few percent making it a useful model for EOS
measurements. For more details, see [99].

This 4-piece polytropic model is a monotonically increasing function (dp/de > 0) that
converges to the same known form below p = py. Therefore conditions 1 and 2 are built
directly into our EOS model. However, conditions 3 and 4 are not always satisfied with
this model. In section 5.3, we outline how these conditions are built into our analysis by
including them as a prior: information used for updating our measured EOS posteriors.

We incorporate EOS effects into the gravitational waveform using this EOS fit.
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Since the NS EOS p(p) defines the relationship between its mass and its tidal deforma- o7

bility A(m|EOS), by specifying the four parameters of our model, we can determine
the tidal deformability parameters A for a NS given its mass. In this way, EOS ef-
fects enter the gravitational waveform through the calculating of the tidal deformability

A = A(m|log(py),['1,T9,T'3) as described in Sec. 4.2.

5.3 Two-stage MCMC approach

In Ch. 4, we used MCMC simulations to estimate the posterior distribution p(6|d, H, )
for several simulated BNS inspiral events whose waveforms were modeled by the pa-
rameters § = {Mc,q,]\,é[\,D,L,a,5,¢,¢ref,tref}. In doing so, we first had to de-
velop the LALInferenceMCMC sampler to take steps in the tidal deformability parame-
ters Orga = {/NX,(SJNX}. We then marginalized over all extrinsic parameters to find the
marginalized posterior distribution p(M., g, A, 5/~\|d, H,Z) of the intrinsic parameters.
We now seek to estimate the marginalized posterior distribution
p(gEos\dl, ..ydy,H,Z) for n BNS events whose waveforms are modeled by the
EOS parameters fpos = {log(p1),T'1,T5, T3} instead of the tidal deformability pa-
rameters @idal = {/~\,5/~\}. The full set of parameters in this case, including external
parameters, is @ = {Me,q,10g(p1), 1,02, T3, D, 1,00, 0,1, dre, treg}. Developing the
LALInferenceMCMC sampler to take steps in the EOS parameters 67Eos also involves
calculating A = A(m|5Eos) for each proposed step, which is not a trivial transformation.
With the utilities available to my collaborators and I at the time, it was more convenient
to use a two-stage MCMC approach to estimate the marginalized posterior distribution
when including EOS parameters. Additionally, since all NS matter is governed by the
same EOS, the second step of this approach allows us to combine information from
multiple inspiral events to put tighter constraints on the EOS parameters, as was
demonstrated in [100]. We have since developed the LALInferenceMCMC sampler to take

steps in the EOS parameters, and the results match those from our two-stage approach.

www.manaraa.com



5.3.1 Derivation 98

We first derive the two-stage approach, which follows Sec. IV.A in Ref. [95]. Since we
seek to measure the NS EOS, our primary goal is to find the marginalized posterior
PDF for just the EOS parameters. When considering a single inspiral event, this would
normally be calculated by finding the full posterior PDF and integrating out all non-EOS
parameters:

p(gEOS|d,H,I) - /p(gl|daH7I)d5c1thera (531)

where ' = {gEos, @ther}. However, as mentioned above, the calculation of p(g’ |d,H,T)
requires us to develop the LALInferenceMCMC sampler to take steps in EOS parameters.
We wondered if we could somehow use the MCMC from the original parameterization
(52 {M.,q, A, O6A, D, 0,1, Grof, Lot} = {gtidal, Qlther}) to estimate p(gEos\d, H,T).
We start by treating the EOS parameters as extra parameters independent of the
existing tidal parameters, and we will later use the fact that the EOS parameters and the
mass parameters together determine the tidal parameters. The marginalized posterior of

this system is

p(Oros|d, H,T) = /P(5E0875|d7H,I)d5, (5.3.2)

When considering n events that are known to have the same EOS parameters, this be-

comes:

p(0gos|dy, ..., dn, H,T) = /p(JEOS,ej,...,§n|d1,...,dn,H,I)dél...dgn

1

- Oros, 0, ..., 0,|T
p<d17"‘7dn7|HJZ) /p< pos» 71 ’ )

x p(dy, ... dp, |0s0s, 01,0, H,T) db, ...d6,

where Bayes’ theorem was used to get to the second line from the first. The prior

p(ggos, 0y,... ,§n|I) can be broken up as follows:

3

p(gEOS>§17 . 7§n|I) = p(gEos|I) p(§i|§EOSadiaI)

N
Il
—

—=

= p(gEOS‘I) [P(mu, m2,i|5E087 7)

@
I
—

X p(]\ilml,iam2,i7§EOSJI>p(‘§ex,i|I> )
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where the first step used the conditional probability chain rule. Here, we take 9_;“ to be 99
the extrinsic parameters of 9:, which are {(5]\1-, D;, iy 0ty 05, iy Pref iy ret,i b and these do not
depend on EOS parameters. Technically, 6A is an intrinsic tidal deformability parameter
which provides additional EOS information. However, we have shown in Sec. 4.3.3 that
it is unmeasurable with al.LIGO, so we marginalize it out along with the rest of the
extrinsic parameters. Because the likelihood p(dy, ..., d,, |§EOS, 51, o ,5n, H,Z) depends
on n different BNS events and only depends on the waveform parameters, not the EOS

parameters, it can be written as a product of single-event likelihoods like so

n

p(db B 7dn7 ’5E057§17 s >§n>HaI) = Hp(dzle_;aHal—)

i=1
The variables of integration d@: e d@:L can also be split up into their extrinsic and intrinsic

parts. By then reorganizing the integral, the marginalized posterior can be written

. 1 .
Ooosldy, . dy H,T) = Gros|T
prosi = S | e

X

[H p(ma, m2,i|§E087 I)p(]\i’ml,i, M., 5EOSu 7)
i=1

—

X / (0| T)p(di) 6, H,I)delx,i] d0rs . . . dy

Here, we take é;m to be the intrinsic parameters of 9_;-, which are {/~\i, mi;, Mia}t. We now
use the fact that the EOS parameters and the mass parameters together determine the

tidal parameters to write the prior in A as
p(Ailma i, may, Opos, T) = 6(A; — A(ma i, ma, Oros)).-

The marginalized posterior is now

. 1 . [ .
9 d dn7 71' - 9 I IR) 19 ,I
p(Oros|dy, ... dy, H,T) pdr A H.T) /P( ros|Z) _gp(ml, ma,;i|fros, Z)

X

1 Ai=A(m1,:,;m24,0808)

{ / P(Oesed | T)p(il 03, H, T) B
X dlede,l e dm17ndm2,n.
By realizing that

—

L(dys; 0niy H, T) = / POus | T)p(ds| 0, H, T) e (5.3.3)
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is the quasi-likelihood for the intrinsic parameters, the marginalized posterior for the EOS 100

parameters can be written

S 1 -
0 dy,....d 1) = 0 7
P( EOS| 1, ydn, H, ) p(d1---,dn|H,I) /p( EOS’ )
X [p(ml,ia m2,i|§EOS> I)

1

~

—

X 'C(di;ein,iaH?I)

|Ai:A(m1,i M2, ,gEOS):|

X dm171dm271 R dm17ndm27n. (534)

Estimating p(gEOS|d1, ...,dn,’H,T) can now be broken into two stages: 1) solve for the
quasi-likelihood in Eq. (5.3.3), which is easily estimated by the marginalized posterior
samples for each event using the LALInferenceMCMC sampler, and 2) solve 5.3.4, which

is done using another MCMC routine.

5.3.2 Implementation
The two-stage approach to calculate Eq. (5.3.4) is implemented in the following way:

1. Stage 1: Given di,...,d,, run each data stream segment through the
LALInferenceMCMC parameter estimation pipeline. This takes steps in the param-
eters 0_; = { M., g, A, 6A;, D;, v, 0, 0,0, Gret i tref i } and calculates the likelihood
from Eq. (4.3.4) at each point. The output of the MCMC sampler is just a list of
parameter points for each segment d;. The density of the MCMC samples is an
estimation of the underlying posterior distribution p(@|di, H,Z) and can be used to

construct this distribution, if desired.

2. Marginalize each posterior over extrinsic parameters, which by definition is calcu-
lated through an integration: p(MC7i,qi,/~\i|di,H,I) = fp(§i|d,;,H,I)d§(3X,i, where
we group the unmeasurable §A; with the extrinsic parameters 6’_;“ However, one of
the conveniences of using an MCMC algorithm is that this integration is equivalently
(but much more simply) accomplished by storing only the information from the in-
trinsic parameters for each MCMC sample. Thus, no integration is required to find
marginalized MCMC samples which can be used to construct p(M.;, ¢;, /~X,~|dl-, H,T),
if desired.
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3. Using n = q/(1 + q)?, perform a coordinate transformation from ¢; — #; for each 101

marginalized MCMC sample of the intrinsic parameters.

4. Construct p(Mc;, n;, /~\i|dz~, H,Z) from the density of the marginalized MCMC sam-
ples. This is done using a Gaussian kernel density estimator (KDE) on the intrinsic
parameter samples. For our case, the function p(MC,i,ni,Ai|di,H,I) is equal to
L(d;; «9;1,@-, H,T) of Eq. (5.3.4) because the intrinsic parameter priors are uniform,

which will be discussed shortly.

5. Stage 2: Given p(M.;,n;, /~\i|di, H,T) for each data stream segment d;, use another
MCMC simulation to estimate the integrand of Eq. (5.3.4). We chose the affine-
invarient ensemble sampler emcee for our analysis [101]. We set up this MCMC
sampler to take steps in 4 + 2n parameters: 4 EOS parameters (common to each
system) and 2 mass parameters (independent for each system). These parameters
are {log(p1),I'1, T2, s, Mc1,m1, ..., Men,mn }. We calculate the joint likelihood of
each sample by calculating {]\“ M., mi} from {log(p1), 1,2, I's, M, m;}, finding
the value of the quasi-likelihood at that point using the function £(d;; é;n,i, H,I) =
p(Mei,mi, Ai|d;, H,T) from Step 4, and taking the product of each quasi-likelihood.

The priors used are the mass and EOS priors in the integrand of Eq. (5.3.4).

6. Marginalize over the masses to obtain samples from p(5E05|d1, ooy dy,H, ). Again,
this is done by simply storing only the information from the EOS parameters for

each MCMC sample.

7. Construct p(gEOS]dl, ...y dn, H,T) from the density of the marginalized MCMC sam-

ples. This is done using a Gaussian KDE on the intrinsic parameter samples.

The priors used in the Stage-1 MCMC are those outlined in Sec. 4.3.2. However, when
we injected 1 Mg NSs, we reduced the lower limit on the component mass priors to be
0.5 Mgy < my <my; <30 Mg and the upper limit of the measurable tidal deformability
parameter to be 0 < A < 5000. This was to ensure that our posterior distributions were
not affected by the choice of our prior distributions.

The priors used in the “Stage 27 MCMC are as follows. The prior distribution for

the EOS parameters are uniform in 33.5 < log(p;) < 34.5, where p; is in cgs units,
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em gs2 14 <T; <5,1<Ty <5 and1l <TI's <5 Additional restrictions 102
on the EOS parameters are that the speed of light must be greater than the speed of
sound (\/W < ¢) and that the EOS must support the largest observed NS, which we
take to be the pulsar J03484-0432 with a 20 lower-bound mass of 1.93 Mg, (conditions 3
and 4 of Sec. 5.2). Lastly, we also require that py > 2.63 x 102 g/cm?, which restricts
small values of I'y for large log(p;) (see [99]). We also use uniform prior distributions in
1 Mg <my <my <3 Mg, unless injecting 1 M NSs, in which case we use uniform prior
distributions in 0.5 Mg < my < m; < 3 Mg. A 3 Mg upper limit in component mass
(as opposed to the 30 My upper limit of the “Stage 17 MCMC) fully contains the major

contributions of each posterior as well as the allowed NS masses for all viable EOSs.

5.4 Measuring the NS EOS

We seek to characterize the ability of the Advanced LIGO-Virgo network to measure
the NS EOS from detected BNS events. To do so, we simulate a realistic population of

coalescing BNS events.

5.4.1 The baseline simulated BNS population

The key properties of our simulated BNS population are as follows.

e Number of events: The number of coalescing BNS events accessible to the Ad-
vanced LIGO-Virgo network depends on the BNS inspiral rate per Milky Way
Equivalent Galaxy (MWEG), the number density of MWEGSs, and the observa-
tional time. We choose to use the “realistic” BNS inspiral rate and number density
from Ref. [53], which are 100 events / Myr / MWEG and 0.0116 MWEGs / Mpc?
respectively. We also choose an observational time of one full year of data where all
three detectors are taking data simultaneously. These three numbers can be used
to determine the number of coalescing BNS systems within a volume of radius r

through

BNS events 1 Myr MWEG 4 4
= (100 2SS ) (2T (0011 - 1yr).
laxs(r) ( "0 NrwEG Myr) (106 v ) (OO O Npe ) (3“ > (Lyr)
(5.4.1)
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Since we expect detecting a certain number of BNS events to be a Poisson process, 103

we construct a Poisson distribution with mean Npns(Tmax ), where 7., is chosen to
overestimate the reach of the Advanced LIGO-Virgo network. We then draw from

this Poisson distribution to determine the number of BNS systems to simulate.

e System parameter distributions: We distribute the BNS systems uniformly in
volume and orientation. We draw the mass of each NS from a uniform distribution
between 1.2 My and 1.6 M, which is chosen to resemble the Gaussian distribution

of Ref. [102]. We assumed that the NSs were non-spinning for this analysis.

e Detector properties: The detector sensitivity is characterized by their PSDs. We
use the Advanced detector PSDs referenced in Sec. 4.3.2 for this analysis. Of the
BNS systems simulated ~120 had p,e > 8 and ~30 had pye; > 12, where ppep = 12
is often taken as a rough estimate of the detection threshold for a GW search. We
analyzed the loudest (largest pner) 20 sources whose ppet, calculated by integrating

from fim = 30 Hz to fisco, ranged from 63.7 to 13.6.

e NS EOS: We choose to use the 4-piece polytropic fit of MPA1 from Ref. [99] as
the true EOS for every BNS event in our simulated population. The MPA1 EOS
is considered a moderate EOS, and using its fit instead of its true tabulated form
separates systematic error effects from using an inexact EOS model and an inexact

waveform model, which is discussed later in this chapter.

We injected signals from this baseline population into zero-noise data to separate the
effects of statistical fluctuations in noise from our results and estimate the most probable
measurement uncertainty of EOS parameters, as described in Sec. 4.3.3. In Fig. 22, we
present the 1o, 20, and 30 credible regions found when combining information from the
loudest 20 events to measure the NS EOS. These figures are made in the following way.
First, the independent parameter (either p or m) is binned, and each bin is assigned a
value for the independent parameter (i.e. the midpoint of the bin). Next, the dependent
parameter value (p, R, or A) at a specific bin for each MCMC sample is calculated from
the EOS specified by the marginalized EOS parameters and the value of the independent

parameter at that bin. The dependent parameter samples for each independent parameter
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Figure 22 : Measurement uncertainty in the recovered EOS p(p), radius R(m), and tidal deformability
A(m) for the loudest 20 events of the baseline BNS population. The red, green, and blue shaded regions
represent the 1o, 20, and 30 credible regions respectively. The “true” pressure in the bottom left panel is
the pressure of the injected EOS, which in this case is the fit to the MPA1 EOS. In the right panels, the
dotted vertical line at 1.93 M, is the mass above which some accepted EOS parameters do not produce
a stable NS, and this mass is set by the prior.

bin are histogrammed, and the credible intervals are calculated for each bin. Once this is
done for every independent variable bin, the credible intervals in each bin are connected
across the full space to become the contours shown. A slight complication arises for the
plots binned in component mass. Each proposed EOS has a maximum supported NS
mass. When considering mass bins above 1.93 Mg, not all the EOSs for each MCMC
sample formed stable NSs at that mass. Instead, masses above 1.93 Mg, resulted in black
holes for some EOS models, and the radius and tidal deformability distributions became
bimodal with delta function peaks at the Schwarzschild radius and A = 0. Therefore, the
credible intervals in radius and tidal deformability for masses above 1.93 Mg represent

the fraction of the MCMC samples that produce a NS or a black hole.
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Fig. 22 demonstrates the effectiveness of the Advanced LIGO—Virgo network to mea- 105

sure the NS EOS. Combining information from the loudest 20 BNS events in a year of
triple-coincident data, radius measurements for NSs between 1-2 M, are achievable with
an uncertainty of less than 1 km. Additionally, constraints can be placed on the EOS
even for NSs not within this mass range, though these constraints are admittedly not as
tight. This would be a great achievement if accomplished.

It is apparent from the p/puue plot in Fig. 22, however, that a large portion of the
credible interval in certain density regions is a result of the EOS parameterization. Firstly,
there is relatively larger uncertainty in the pressure around the fixed transition densities
p1 and ps. A model whose transition densities are free parameters, such as the one
presented in [103], would not experience such features. Secondly, the credible interval
seem to underestimate pi... at large densities. This is where we are running up against
the causality limit. The maximum speed of sound for the MPA1 EOS is vg max = 0.994.
The 4-piece fit to this EOS overestimates this quantity by roughly 5%. However, since
Us max Must be less than ¢ and the corresponding 4-piece fit overestimates vs max, the lower
pressure MCMC samples get regularly accepted. Thirdly, the credible intervals are large
below nuclear density because there is relatively little mass below nuclear density, and the
model provides minimal information for how the core and crust EOSs are joined. This
analysis would surely benefit from using a different EOS parameterization, such as the

ones presented in Refs. [103] and [104].

5.4.2 Results dependencies

In our hypothetical scenario, we are passed a list of BNS detections made in a year’s
worth of 3-detector observing segments, and we chose to analyze the loudest 20 signals
to put constraints on the NS EOS shown in Fig. 22. How would these results change if
we chose more or less signals to analyze? The left plots in Fig. 23 demonstrates how the
EOS constraints are affected by the number of signals analyzed. It turns out that the
majority of EOS information is provided by the loudest ~5 signals (pnet = 20), and the
credible intervals do not noticeably improve by including any additional signals.

In Sec. 5.3, we outlined the prior distributions and constraints used in our analysis.
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One of the constraints is that the NS EOS must stably support a 1.93 M, NS, which is 106
derived from the observation of the massive pulsar J03484-0432. What if an even more
massive NS is observed? To consider this effect, we take PSR B19574-20, which is a black
widow pulsar found to have a mass of 2.40 £ 0.12 M, though a more conservative lower
limit of 1.66 M, is more appropriate [105], and assume that its mass is 2.4 Mg. We
present our results in the right plots of Fig. 23. The 20 prior contours for the different
maximum mass observations are plotted as dashed lines. By requiring proposed EOS to
support NSs at 2.4 M, we find significantly tighter constraints on the lower bound of the
pressure above p ~ p; and on the lower bound of the NS EOS for large masses. The upper
bound for large densities and masses, however, does not change since it is determined by
the causality requirement.

The mass distribution of our population was chosen to be uniform between 1.2-1.6 M.
What if the true BNS mass distribution were actually higher or lower than expected? We
might expect that a population of low-mass NSs would better constrain the EOS at low
densities and a population of high-mass NSs would better constrain the EOS at high
densities, since a NS’s density increases with its mass. This is exactly what we see in the
left plots in Fiig. 24. Here, we compared four different populations: the baseline population
containing NSs with masses uniformly distributed between 1.2-1.6 My, a population of
just 1.0 M NSs, a population of just 1.4 M, NSs, and a population of just 1.8 My NSs.
We analyzed the loudest 5 sources keeping everything else the same. Additionally, we find
that the EOS constraints from the population of all 1.4 M, NSs are extremely similar,
which suggests that even populations with very narrow mass distributions can provide
valuable constraints on the NS EOS.

We also found consistent results to those in Fig. 22 when considering different “true”
EOSs. Since these MCMC runs are computationally expensive, we considered param-
eter estimation on various EOSs using the Fisher Information Matrix (FM). First, we
demonstrated a remarkable consistency between MCMC results and FM results. We
then considered a handful of candidate EOSs, and showed that they too result in tight
EOS constraints and that these constraints are effective at ruling out false EOS models.

The results of this analysis can be found in Ref. [95].
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5.4.3 Statistical and systematic error 107

In Sec. 5.4.1, we model the event rate by a Poisson process and determine the number
of systems to simulate within a given volume by drowning from a Poisson distribution.
What effect does this have on our analysis? In the right plots in Fig. 24, we consider four
additional populations with exactly the same properties but a different draw from the
Poisson distribution. Our results seem roughly consistent across the different populations.

In each of our results so far, we injected signals into zero-noise to estimate the most
probable measurement uncertainty of EOS parameters. How much might individual noise
realizations affect our results? In the left plots in Fig. 25, we inject the loudest 5 signals
into different realizations of synthetic noise, and we do this 5 different times. Again, our
results seem roughly consistent across the different noise realizations, and the statistical
error from a given noise distribution will only be washed out more by analyzing additional
signals. Also, as expected, the zero-noise results seem to be an average representation of
the contours from different noise realizations.

As demonstrated in Sec. 4.5.1, the biggest obstacle to measuring the NS EOS with ad-
vanced GW detectors is the systematic error from waveform uncertainty. The right plots
in Fig. 25 reiterate the effects of modeling bias in our pN waveforms on EOS parameter
estimation. Here we plot the results from three different runs where we inject the loudest
5 signals from our baseline population into zero-noise using the TaylorT1, TaylorF2, and
TaylorT4 waveform approximants. For each run, we use TaylorF2 templates for param-
eter estimation. Since each pN waveform is equally reliable to the same pN order, this
models our ignorance of the true waveform. We find that using pN waveforms results in

systematic error that is large enough to significantly bias the EOS measurements.

5.5 Conclusion

We have presented a new method to measure the NS EOS through the estimation of the
EOS parameters of a 4-piece polytropic model. We have shown through a full Bayesian
analysis of a simulated BNS population consistent with “realistic” merger rates that

advanced detectors ca measure the NS EOS to better than £1 km. If achieved, such
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constraints would be an extraordinary achievement. 108

We also outlined the dependencies and sources of error for our results. We notably find
that (i) the majority of the information used to constrain the NS EOS when combining
many BNS signals comes from the loudest ~5 sources, which roughly correspond to a
Pret 2 20, (i) the incorporation the of the existence of an even heavier NS into the
prior distribution can lead to much tighter EOS constraints at large masses and densities
but does not affect constraints near small masses and densities, and (ii7) our results
do not depend significantly on the particular realization of the chosen population or
the particular noise realizations into which each signal was injected. Our results also
reveal error due to the chosen EOS model. An avenue of future development would be
to incorporate an EOS model such as the one presented in Ref. [103] or [104] into this
analysis. Systematic errors due to waveform uncertainty are still the biggest obstacle to
overcome. Accurate waveform models that can be quickly generated and run through a
full Bayesian analysis in a reasonable amount of time must be developed and incorporated
into our analysis routines in order to make the kind of measurements presented in the

chapter.
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Figure 23 : Measurement uncertainty in the recovered EOS p(p), radius R(m), and tidal deformability

A(m) with the baseline BNS population. (Left) Contours represent the 20 credible regions for the

loudest 1, 5, and 20 events. The dashed gray line is the lower limit on the 2o credible region from just

the maximum observed mass and causality priors. (Right) Contours represent the 20 credible regions for
the loudest 20 events. The maximum observed NS mass is varied from 1.93 Mg (blue) to 2.4 Mg (blue).
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Figure 24 : Measurement uncertainty in the recovered EOS p(p), radius R(m), and tidal deformability
A(m). (Left) Contours represent the 20 credible regions for the loudest 5 events. Results use a variation
of the baseline population where all parameters are kept the same except the masses are varied to be all
1.0 Mg (green dot-dashed), all 1.4 Mg, (blue dashed), and all 1.8 Mg (magenta) and the associated tidal
parameters. Also shown is the lower limit of the 20 credible region from just the maximum observable
mass and causality priors. (Right) Contours represent the 20 credible regions for the loudest 5 events.
Results represent five different populations with the same event rate as the baseline population.

www.manaraa.com




111

3.5 S — 3.

g : = Loudest 5, 20, 0-noise
Loudest 5, 25, noise 1
Loudest 5, 2, noise 2
Loudest 5, 20, noise 3
Loudest 5, 20, noise 4
Loudest 5, 20, noise 5
Fit to MPA1

= = Prior, 20

----- TaylorTl, 20
= Taylorf2, 20
== TaylorT4, 20

P RL8p

<

PETETEE S TR v e o o o ¥

1.0
05 .
[ : : RS S :
[0 )00 AP TP [ S SIS I PN B R PP TR B SR TP P SRR TP BRI s
14.0 142 144 146 148 150 152 15.4 . 142 144 146 148 15.0 152 154
log(p) (9/cm*) log(p) (9/cm*)

R (km)

PP P I TP I I
R (km)

o

PR U T TS S N S T NS S S N S
LA L LA L L NN NN BN NN LN NN
I == Loudest 5, 20, 0-noise
—— Loudest 5, 20, noise 1
—— Loudest 5, 20, noise 2
— Loudest 5, 20, noise 3

------ TaylorTl, 20
— TaylorF2, 20
== TaylorT4, 20
— Fit to MPAL

Loudest 5, 20, noise 4
Loudest 5, 20, noise 5
Fit to MPA1

A (10% g cm? s?)
A (10% g cm? s?)

O H N W A U1 N 0
T T T T O T T T T T T

“,
FLl 2=  TNNS— N ™ 7 P E S L awraSLiitoos N ""«.‘

F ~ T a s TUBY
R PP PPN B BN B R TP T 2 1 o i el il
.0 0.5 1.0 1.5 2.0 2.5 3.0 .0 0.5 1.0 5 2.0 2.5 3.0
M(M,) M(M)

Figure 25 : Measurement uncertainty in the recovered EOS p(p), radius R(m), and tidal deformability
A(m) with the baseline BNS population. (Left) Contours represent the 20 credible regions for the loudest
5 events in five different noise realizations. (Right) Contours represent the 20 credible regions for the
loudest 5 events injected using the waveform families labeled in the legend and recovered with TaylorF2
templates. Also shown is the lower limit of the 20 credible region from just the maximum observable

mass and causality priors.
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Chapter 6

Conclusion

With the advanced detector era of GW physics rapidly approaching, the first direct
detections of gravitational waves are just on the horizon. This dissertation presents work
on two promising sources of GWs detectable with advanced detectors: 1) isolated, rotating
NSs, and 2) compact binary coalescences.

In Ch. 2, we used a simulated population of isolated, rotating NSs to assess the de-
tectability of the Galactic NS population through detection of their continuous-wave emis-
sion and demonstrate how the number of detections can place meaningful constraints on
the properties of such a population. To do so, we evolved each star’s frequency through a
combination of electromagnetic and gravitational emission, which are respectively driven
by the star’s magnetic field and ellipticity. Since the GW strain depends on both the
ellipticity and orbital frequency of the star, which depends on the magnetic field and
ellipticity, the number of detections made by aLIGO can place constraints on these pa-
rameters. While our simulated population is admittedly primitive, this project was meant
to demonstrate how alLIGO can inform us about the magnetic field and ellipticity proper-
ties of Galactic NSs. Future work involves upgrading our population to be more realistic
by incorporating distributions in magnetic field and ellipticity, for instance.

Ch. 3 discusses the development of a CBC search for IMBHBs. Though the existence
of IMBHBsS is still uncertain, if they do exist, they could be prime candidates for aLIGO.
In fact, advanced GW detectors might just be our best chance at a conclusive IMBH

detection. While a burst search for IMBHBs was performed on previous science runs,
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we propose to run a CBC search in addition to the burst search due to the improved 113
low-frequency sensitivity of the advanced detectors. IMBHB signals will be in band long
enough to warrant a matched filter search using CBC waveform models as filters. In our
first MDC, we demonstrated alLIGO’s incredible reach to large IMBHB sources, which
extends up to ~1,000 Mpc and probes cosmological scales! However, only non-spinning
systems were considered for simplicity. Our second MDC endeavors to test the search’s
sensitivity to spinning and precessing signals. Preliminary results point to transitioning
to an aligned-spin template bank to maintain and even surpass the sensitive distances
quoted in MDC1, but more investigations are needed before such a conclusion is definitive.
We will also have to explore the search’s sensitivity to the entire IMBHB mass parameter
space, and we hope to do this in an upcoming engineering run.

Ch. 4 studies the prospect of measuring the tidal interactions of BNS systems as they
coalesce. Leading-order and next-to-leading-order tidal corrections to PN waveforms af-
fect the high-frequency portion of the CBC waveform and can be parameterized by a single
parameter for each component. We outline the measurability of a linear combination of
these two parameters for various mass combinations and a moderate EOS.

The real quantity of interest is not the tidal parameters but the NS EOS. In Ch. 5,
we present a method to directly measure the EOS by measuring the parameters of a
robust EOS model. This method allows for the combination of information from many
BNS detections as well as the easy incorporation of physical and observational prior
information that help to improve measurability. We show that advanced detectors at
design sensitivity are capable of measuring the radii of NSs with canonical masses to
within a kilometer, which would be an extremely tight constraint on the NS EOS if
achieved.

The last remaining obstacle to overcome in order to make accurate EOS measurements
are models that can generate waveforms quickly enough to be run through a full Bayesian
parameter estimation routine but accurately enough to make unbiased measurements. In
Chs. 4 and 5, we observe large systematic error in EOS measurements from PN waveforms
with leading-order and next-to-leading-order tidal corrections. Such systematic error can

only be overcome through the development of waveforms that are more accurate. No
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waveforms yet exist that simultaneously satisfy the following two conditions: (i) they 114
accurately capture EOS effects at high frequencies, and (i7) they are efficient enough in
generation to be used in a full Bayesian parameter estimation routine.

By Fall of this year, aLIGO will be coming online. In this dissertation, we have
presented work geared toward three capabilities of advanced detectors: 1) The ability to
learn more about the Galactic NS population, 2) the possibility of the first conclusive
detection of IMBHs, and 3) potential NS EOS constraints as tight as +1 km for NSs with
canonical masses. With all this and more on the horizon, the next several years promise

to be an exciting time to be a gravitational-wave physicist!
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Reconstructing the neutron-star equation of state with gravitational-
wave detectors from a realistic population of inspiralling binary neu-
tron stars (Submitted to Phys. Rev. D)

Jolien Creighton

Demonstrated a new method to improve future neutron star equation of
state constraints from gravitational-wave detectors by directly measuring a
parameterized equation of state model (Lackey, Wade, 2014).

Winter 2012 — Present

LALInference software development

Jolien Creighton

Contributing to the development of the Markov Chain Monte Carlo sam-
pler in LALInference, which is a gravitational-wave data analysis software
package used by the LIGO collaboration for Bayesian parameter estima-
tion, by upgrading it to more efficiently measure tidal parameters.

Winter 2012 — Spring 2014

Systematic and statistical errors in a bayesian approach to the estima-
tion of the neutron-star equation of state using advanced gravitational-
wave detectors (Published in Phys. Rev. D)

Jolien Creighton

Used bayesian simulations to study the measurability of equation-of-state
parameters encoded in gravitational waves emitted by binary neutron stars,
and demonstrated that the current gravitational waveforms were not yet
suitable for estimating these parameters (Wade et. al, 2014).

Winter 2012 — Spring 2013

LALSimulation software development

Jolien Creighton

Added first- and second-order tidal corrections to several post-Newtonian
compact binary coalescence waveform families in LALSimulation, which
is a gravitational-wave data analysis software package used by the LIGO
collaboration to simulate gravitational waveforms.

Summer 2010 — Winter 2012

Continuous gravitational waves from isolated galactic neutron stars in
the advanced detector era (Published in Phys. Rev. D)

Xavier Siemens

Used a simulated neutron star population to assess the detectability of the
isolated Galactic neutron star population and constrain its properties (Wade
et. al, 2012).

Computer Skills

Languages
and Tools

Proficiency in Python, C/C++, IATEX, LAL, gstlal, GSL,
SVN, Git, Vim

Familiarity with bash scripting, FORTRAN, Mathematica,
SQLite, and XML
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Scientific Outreach / Volunteer Activities

Period
Activity

Period

Activity

Period
Activity

Period
Activity

Fall 2014

Black Hole Bash Volunteer Milwaukee, WI
Volunteered for the “Black Hole Bash” event hosted by the UW-Milwaukee
Center for Gravitation, Cosmology, and Astrophysics, which educated the
general public on black hole science.

Fall 2011 — Fall 2012
Astronomy Club Milwaukee, WI
Attended and participated in the Astronomy club at the UW-Milwaukee.

Fall 2011 — Fall 2012

Tutor at Grace Fellowship Church of Milwaukee Milwaukee, WI
Tutored elementary through high school aged students in the local commu-
nity.

Summer 2010, Fall 2010

LIGO Science Monitor Hanford, WA
Spent two weeks training and working as a science monitor at the LIGO
Hanford Observatory.
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Publications

Primary Publications:

e B.D.Lackeyand L. Wade. “Reconstructing the neutron-star equation of state with gravitational-
wave detectors from a realistic population of inspiralling binary neutron stars”. Phys. Rev.
D, 91:043002, Feb 2015. (arXiv:1410.8866)

e J. Veitch, V. Raymond, B. Farr, W. M. Farr, P. Graff, S. Vitale, B. Aylott, K. Blackburn,
N. Christensen, M. Coughlin, W. D. Pozzo, F. Feroz, J. Gair, C. J. Haster, V. Kalogera, T.
Littenberg, I. Mandel, R. O’Shaughnessy, M. Pitkin, C. Rodriguez, C. Rover, T. Sidery, R.
Smith, M. V. D. Sluys, A. Vecchio, W. Vousden, L. Wade. “Robust parameter estimation
for compact binaries with gravitational-wave observations using LALInference”. Phys.
Rev. D, 91:042003, Feb 2015. (arXiv:1409.7215)

e L. Wade, J. D. E. Creighton, E. Ochsner, B. D. Lackey, B. F. Farr, T. B. Littenberg, and
V. Raymond. “Systematic and statistical errors in a bayesian approach to the estimation
of the neutron-star equation of state using advanced gravitational-wave detectors”. Phys.
Rev. D, 89:103012, May 2014. (arXiv:1402.5156)

e L. Wade, X. Siemens, D. L. Kaplan, B. Knispel, and B. Allen. “Continuous gravitational
waves from isolated galactic neutron stars in the advanced detector era”. Phys. Rev. D,
86:124011, Dec 2012. (arXiv:1209.2971)

LIGO Scientific Collaboration publications, of which I am an author:

e The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Searching for
stochastic gravitational waves using data from the two co-located LIGO Hanford detec-
tors.” Phys. Rev. D 91 (2015) 022003.

e The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Improved
Upper Limits on the Stochastic Gravitational-Wave Background from 2009-2010 LIGO
and Virgo Data.” Phys. Rev. Lett. 113 (2014) 231101.

e The IceCube Collaboration, The LIGO Scientific Collaboration, the Virgo Collaboration:
M.G. Aartsen, et al. “Multimessenger Search for Sources of Gravitational Waves and
High-energy Neutrinos: Results of the Initial LIGO-Virgo and IceCube.” Phys. Rev. D 90
(2014) 102002.

e The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Implemen-
tation of an F-statistic all-sky search for continuous gravitational waves in Virgo VSR1
data.” Class. Quantum Grav. 31 (2014) 165014.

e The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “First all-
sky search for continuous gravitational waves from unknown sources in binary systems.”
Phys. Rev. D 90 (2014), 062010.

e The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “First Searches
for Optical Counterparts to Gravitational-wave Candidate Events”. ApJS 211 (2014) 7.



The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Constraints
on cosmic strings from the LIGO-Virgo gravitational-wave detectors”. Phys. Rev. Lett.
112 (2014) 131101.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Application
from a Hough search for continuous gravitational waves on data from the 5th LIGO science
run”. Class. Quantum Grav. 31 (2014) 085014.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “The NINJA-2
project: Detecting and characterizing gravitational waveforms modelled using numerical
binary black hole simulations”. Class. Quantum Grav. 31 (2014) 115004.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Search for
gravitational wave ringdowns from perturbed intermediate mass black holes in LIGO-
Virgo data from 2005-2010”. Phys. Rev D 89 (2014) 102006.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Search for
gravitational waves associated with gamma-ray bursts detected by the InterPlanetary Net-
work”. Phys. Rev. Lett. 113 (2014) 011102.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Search for
gravitational radiation from intermediate mass black hole binaries in data from the second
LIGO-Virgo joint science run”. Phys. Rev. D 89 (2014) 122003.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Methods and
results of a search for gravitational waves associated with gamma-ray bursts using the
GEO600, LIGO, and Virgo detectors”. Phys. Rev. D 89 (2014) 122004.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Search for
long-lived gravitational-wave transients coincident with long gamma-ray bursts”. Phys.
Rev. D 88 (2013) 122004.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “A directed
search for continuous Gravitational Waves from the Galactic Center”. Phys. Rev. D 88
(2013) 102002.

The LIGO Scientific Collaboration, the Virgo Collaboration: J. Aasi, et al. “Parameter
estimation for compact binary coalescence signals with the first generation gravitational-
wave detector network”. Phys. Rev. D 88 (2013) 062001.

The LIGO Scientific and the Virgo Collaborations: J. Aasi, et al. “Search for Gravitational
Waves from Binary Black Hole Inspiral, Merger and Ringdown in LIGO-Virgo Data from
2009-2010”. Phys. Rev. D 87 (2013) 022002.

The LIGO Scientific and the Virgo Collaborations: J. Aasi, et al. “Einstein@Home all-
sky search for periodic gravitational waves in LIGO S5 data”. Phys. Rev. D 87 (2013)
042001.

The LIGO Scientific Collaboration. “Enhancing the sensitivity of the LIGO gravitational
wave detector by using squeezed states of light”. Nature Photonics 7 (2013) 613.

The ANTARES Collaboration, the LIGO Scientific Collaboration and the Virgo Collabo-
ration: S. Adrian- Martinez, et al. “A First Search for coincident Gravitational Waves and
High Energy Neutrinos using LIGO, Virgo and ANTARES data from 2007”. JCAP 1306
(2013) 008.
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e The LIGO Scientific and the Virgo Collaborations: J. Abadie, et al. “Search for Gravi-
tational Waves from Intermediate Mass Binary Black Holes”. Phys. Rev. D 85 (2012)
102004.

e The LIGO Scientific and the Virgo Collaborations: J. Abadie, et al. “All-sky search for
gravitational- wave bursts in the second LIGO-Virgo run”. Phys. Rev. D 85 (2012)
122007.

e The LIGO Scientific and the Virgo Collaborations: J. Abadie, et al. “Upper limits on a
stochastic gravitational-wave background using LIGO and Virgo interferometers at 600-
1000 Hz”. Phys. Rev. D 85 (2012) 122001.

e J. Aasi, et al. “The characterization of Virgo data and its impact on gravitational-wave
searches”. Class. Quantum Grav. 29 (2012) 15502.

e P.A. Evans, et al. “Swift follow-up observations of candidate gravitational-wave transient
events”. ApJS 203 (2012) 28.

e The LIGO Scientific Collaboration, Virgo Collaboration: J. Abadie, et al. “Search for
gravitational waves associated with gamma-ray bursts during LIGO science run 6 and
Virgo science runs 2 and 3”. Astrophys. J. 760 (2012) 12.

Presentations

Invited Talks:

e “Searching for intermediate-mass black-hole binaries and measuring the neutron-star equa-
tion of state using advanced gravitational-wave detectors”, CIT LIGO seminar, California
Institute of Technology (Jan 2015).

e “Measuring the neutron-star equation-of-state using advanced gravitational-wave detec-
tors”, CIT LIGO seminar, California Institute of Technology (April 2014).

Contributed Talks:

e “On the feasibility of constraining the neutron star equation of state with advanced gravitational-
wave detectors”. 22nd Annual Midwest Relativity Meeting, Milwaukee, WI (October
2013)

e “Studying the effects of tidal corrections on parameter estimation”. American Astronom-
ical Society (AAS) Annual Meeting, Long Beach, CA (January 2013)

e “Studying the effects of tidal corrections on parameter estimation”. 22nd Annual Midwest
Relativity Meeting, Chicago, IL (September 2012)

e “Studying the effects of tidal corrections on parameter estimation?”. Gravitational Wave
Physics and Astronomy Workshop (GWPAW), Hannover, Germany (June 2012)

e “Continuous gravitational-wave sources from galactic neutron stars in the advanced de-
tector era”. 21st Annual Midwest Relativity Meeting, Urbana, IL (November 2011)

e “Continuous gravitational-wave sources from galactic neutron stars in the advanced de-
tector era”. 20th Annual Midwest Relativity Meeting, Guelph, ON, Canada (November
2010)
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Contributed Poster Presentations:

e “A search for intermediate-mass black hole binaries using gstlal”. LIGO Scientific Collaboration-
Virgo Collaboration Meeting, Stanford, CA (August 2014)

e “Studying the effects of tidal corrections on parameter estimation”. 20th International
Conference on General Relativity and Gravitation and 10th Amaldi Conference on Grav-
itational Waves, Warsaw, Poland (July 2013)

e “Studying the effects of tidal corrections on parameter estimation”. LIGO Scientific Collaboration-
Virgo Collaboration March Meeting, Bethesda, MD (March 2013)

e “Continuous gravitational-wave sources from galactic neutron stars in the advanced de-
tector era”. 219th American Astronomical Society (AAS) January Meeting, Austin, TX
(January 2012)
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