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ABSTRACT

GRAVITATIONAL WAVES FROM ROTATING NEUTRON
STARS AND COMPACT BINARY SYSTEMS

The University of Wisconsin–Milwaukee, April 2015

Under the Supervision of Professors Xavier Siemens and Jolien Creighton

It is widely anticipated that the first direct detections of gravitational waves will be

made by advanced gravitational-wave detectors, such as the two Laser Interferometer

Gravitational-wave Observatories (LIGO) and the Virgo interferometer. In preparation

for the advanced detector era, I have worked on both detection and post-detection e↵orts

involving two gravitational wave sources: isolated rotating neutron stars (NSs) and com-

pact binary coalescences (CBCs). My dissertation includes three main research projects:

1) a population synthesis study assessing the detectability of isolated NSs, 2) a CBC

search for intermediate-mass black-hole binaries (IMBHBs), and 3) new methods for di-

rectly measuring the neutron-star (NS) equation of state (EOS).

Direct detections of gravitational waves will enrich our current astrophysical knowl-

edge. One such contribution will be through population synthesis of isolated NSs. My

collaborators and I show that advanced gravitational-wave detectors can be used to con-

strain the properties of the Galactic NS population. Gravitational wave detections can

also shine light on a currently mysterious astrophysical object: intermediate mass black

holes. In developing the IMBHB search, we performed a mock data challenge where

signals with total masses up to a few hundred solar masses were injected into recolored

data from LIGOs sixth science run. Since this is the first time a matched filter search

has been developed to search for IMBHBs, I discuss what was learned during the mock

data challenge and how we plan to improve the search going forward. The final aspect of

my dissertation focuses on important post-detection science. I present results for a new

method of directly measuring the NS EOS. This is done by estimating the parameters of a

4-piece polytropic EOS model that matches theoretical EOS candidates to a few percent.

We show that advanced detectors will be capable of measuring the NS radius to within a

ii
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kilometer for stars with canonical masses. However, this can only be accomplished with

binary NS waveform models that are accurate to the rich EOS physics that happens near

merger. We show that the waveforms typically used to model binary NS systems result

in unavoidable systematic error that can significantly bias the estimation of the NS EOS.

iii
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1

Chapter 1

Introduction

Einstein’s theory of general relativity (GR) reimagines gravity as a consequence of the

curvature of spacetime caused by matter rather than an attractive force between objects

with mass. Einstein realized that spacetime was not just a platform for but a participant

in matter dynamics [2]. His field equations relate the motion of matter to the curvature

of spacetime caused by matter. Essentially, GR explains objects falling under the “pull”

of gravity and objects in orbit as merely those objects following the straightest possible

path in curved spacetime.

One of the natural products of this new understanding of gravity is the existence of

gravitational waves (GWs), which are oscillations in spacetime that carry information

about changes to gravitating sources, thereby preserving causality as required by special

relativity. As one might expect due to the relative weakness of the gravitational inter-

action, GWs and their e↵ects are mostly unnoticeable. The only sources of GWs whose

e↵ects are large enough to notice are astrophysical. For example, the emission of GWs

from binary neutron stars results in observable changes to the binary’s orbital evolution.

Most famously, the Hulse-Taylor pulsar’s orbit is decaying at precisely the rate that GR

predicts for orbital decay due to GW emission [3]. This discovery provides strong evidence

for the existence of GWs and won Hulse and Taylor the Nobel Prize in 1993.

Though the e↵ects of GWs have clearly been observed, GWs have yet to be directly

detected. Kilometer-scale ground-based interferometers have been built in an e↵ort to

make the first direct GW detections. The United States is home to the two most sensitive
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2GW detectors, called the Laser Interferometric Gravitational-wave Observatory, or LIGO

for short. One of the LIGO sites is located in Hanford, WA, and the other LIGO site is

in Livingston, LA. The initial LIGO configuration referred to as iLIGO was online from

2002-2007 before it was upgraded to an enhanced configuration referred to as eLIGO,

which was online from 2009-2010. Though no GWs were detected in these science runs,

interesting upper limits were placed on certain GW sources [4–7]. The LIGO instruments

were again upgraded to an advanced configuration referred to as aLIGO, which will be

performing its first observing run in Fall 2015. It is widely anticipated that the first direct

GW detections will be made by the time the LIGO instruments reach design sensitivity

c. 2019 [8], and likely much sooner!

The most promising GW sources for aLIGO are compact binary coalescences (CBC)

involving black holes (BHs) and/or neutron stars (NSs). A CBC system consists of two

dense and massive astrophysical objects that are caught in orbit and continuously lose

energy to GWs before eventually colliding. Theoretical models of the form of a CBC

GW, or its waveform, depend on a systems source parameters. Such parameters include,

but are not limited to, the mass and spin of each component in the binary, the distance

between the binary and each detector, and the relative orientation of the binary to each

detector. By adjusting the values of the model’s source parameters, the form of the

modeled wave will change.

To search for CBC signals in detector data, we filter the data through a bank of the-

oretically produced gravitational waveform models and calculate how well each template

matches the data. We can then estimate the probability that a GW signal exists in the

data.

Analysis does not end at a detection. Instead, we hope to use GW signals to study

their astrophysical sources. After a detection is made, the data around that time can be

more thoroughly analyzed to find the most probable combinations of waveform parameters

that resulted in the detected signal. This process is called parameter estimation, and is

discussed in more detail in Sec. 4.3. GW observatories will work like another type of

telescope for studying astrophysical objects.

Several other ground-based interferometers have been built for detecting GWs. Most



www.manaraa.com

3notably, the VIRGO detector located in Tuscany, Italy can reach sensitivities comparable

to the LIGO detectors. It too is undergoing upgrades to an advanced configuration, called

Advanced VIRGO. Advanced VIRGO will play an important role in GW detection and

parameter estimation because it can be used to increase the significance of events for

detection as well as better localize sources in the sky resulting in improved parameter

estimation.

In Ch. 1, we introduce the theory behind GWs and briefly describe ground-based inter-

ferometric detectors. In Ch. 2, we discuss GW emission from another source: isolated ro-

tating NSs. Isolated neutron stars that are not axisymmetric will continuously emit GWs

as they rotate. In this chapter, we discuss a project in which we simulated the Milky Way’s

NS population to determine how well advanced detectors can constrain certain proper-

ties of NSs. In Ch. 3, we discuss development for a CBC search for intermediate-mass

BH binaries (IMBHBs). Due to the improved low-frequency sensitivity, more massive

binary systems such as IMBHBs that merge at relatively low frequencies might be de-

tectable with advanced detectors. In Ch. 4, we outline a parameter estimation approach

for estimating the size of tidal e↵ects in merging NSs, which is intimately related to the

NS equation of state (EOS). In addition, we outline the statistical and systematic errors

associated with such measurements. We then improve upon this approach in Ch. 5 by

reparameterizing from tidal parameters to EOS parameters in order to make direct EOS

measurements. This approach has the added benefit of being able to combine information

from many BNS detections as well as include any observational or physical restrictions

on the NS EOS. We end with a discussion in Ch. 6.

In this chapter, we briefly review the major pieces of gravitational-wave theory. In

Sec. 1.1, we start with how GWs fall out of Einstein’s equations, then describe how

GWs a↵ect matter and can be detected by an interferometer, and finish with how GWs

are sourced. In Sec. 1.2, we discuss two types of gravitating systems: isolated rotating

neutron stars and compact binary coalescences. In particular, we discuss a model for

their waveform. We finish by briefly discussing ground-based interferometers and their

properties in Sec. 1.3.
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41.1 Gravitational wave review1

The Einstein field equations

G
↵�

=
8⇡G

c4
T

↵�

, (1.1.1)

which distinguish GR from other metric theories of gravity, relate the curvature of space-

time to the source of the curvature, which is matter. Here, G
↵�

is the Einstein tensor

G
↵�

= R
↵�

� 1

2
g

↵�

R, (1.1.2)

where the Ricci tensor R
↵�

= gµ⌫R
↵µ�⌫

= R µ

↵µ�

, the Ricci scalar R = gµ⌫R
µ⌫

= R µ

µ

,

and R
↵���

is the Riemann curvature tensor. The metric tensor (or the metric for short)

defines the distance s between two points in spacetime via

ds2 = g
µ⌫

dxµdx⌫ . (1.1.3)

It is therefore fundamental to any metric theory of gravity, such as GR, since it defines

the entire geometry of the spacetime. For flat spacetime in rectilinear coordinates, the

metric is:

g
↵�

= ⌘
↵�

=

2

66666664

�c2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

3

77777775

. (1.1.4)

The matter stress energy tensor T
↵�

has the following parts:

T tt = ⇢ (1.1.5)

T ti = T it = J i (1.1.6)

T ij = Sij, (1.1.7)

where ⇢ is the mass density, J i are the components of the momentum density, and Sij

are the components of the stress tensor. Another way of writing this is

1The entirety of this section closely follows Refs. [2] and [9].
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5

T↵� =

2

66666664

⇢  J i !

" - " %

J i  Sij !

# . # &

3

77777775

.

1.1.1 Linearized gravity

Assuming the gravitational field is weak, which is referred to as linearized gravity, the

metric g
↵�

is just a perturbation h
↵�

to the flat-space metric ⌘
↵�

:

g
↵�

= ⌘
↵�

+ h
↵�

. (1.1.8)

Under this assumption and only keeping terms to first order, the Einstein field equations

become:

�⇤h̄
↵�

� ⌘
↵�

@2h̄µ⌫

@xµ@x⌫

+
@2h̄µ

�

@x↵@xµ

+
@2h̄µ

↵

@xµ@x�

⇡ 16⇡G

c4
T

↵�

, (1.1.9)

where ⇤ = ⌘µ⌫@2/(@xµ@x⌫) is the d’Alembertian operator and h̄
↵�

= h
↵�

� 1
2
⌘

↵�

h is

the trace-reversed metric perturbation, where h = ⌘µ⌫h
µ⌫

= h µ

µ

. By moving to another

gauge in which the divergence of the trace-reversed metric is zero (@h̄µ↵/@xµ = 0), which

is called the Lorenz gauge, the Einstein field equations simply become:

�⇤h̄
↵�

⇡ 16⇡G

c4
T

↵�

. (1.1.10)

It can be shown that a Lorenz gauge can always be found.

1.1.2 Linearized gravity + vacuum spacetime = gravitational waves

In a spacetime in which there is no matter, the linearized vacuum Einstein field equations

in the Lorenz gauge become:

⇤h̄
↵�

⇡ 0. (1.1.11)

Such a spacetime would be a good approximation to being hit by weak GWs in an

otherwise empty area of spacetime far from a gravitating source. A solution to Eq. (1.1.11)

is the plane wave solution, and the Lorenz condition @h̄µ↵/@xµ = 0 ensures that the

plane wave is transverse, meaning that its amplitude is perpendicular to its propagation.
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6There is enough gauge freedom left within the Lorenz gauge to choose a gauge that

also makes the trace-reversed metric perturbation traceless (�ijh
ij

= 0) and completely

spatial (h
↵t

= 0), and this is called the transverse traceless (TT) gauge. In the TT gauge,

h̄
↵�

= h
↵�

⌘ hTT
↵�

since the perturbation is traceless. Additionally, if we align the z-axis

along the direction of propagation of the transverse plane wave, Eq. (1.1.11) indicates

that the components of the perturbation must be functions of the retarded time t� z/c.

Therefore, in the TT gauge, the solution of the vacuum Einstein field equations for the

metric perturbation are transverse plane waves traveling at the speed of light, and these

are called gravitational waves.

The TT gauge reveals that GWs only have two polarizations in GR. For a GW trav-

eling in the z-direction, the Lorenz condition (now @h̄ij/@xi = 0 since the perturbation

is purely spatial) implies that @h̄zi/@xz = 0, meaning h̄
zi

(t � z/c) = h
zi

(t � z/c) =

hTT
zi

(t�z/c) = constant. We can take this constant to be zero. The non-zero components

are hTT
xx

, hTT
xy

, hTT
yx

, and hTT
yy

. Since the perturbation is symmetric,

hTT
xy

= hTT
yx

⌘ h⇥(t� z/c), (1.1.12)

and since the perturbation is traceless and hTT
zz

= 0,

hTT
xx

= �hTT
yy

⌘ h+(t� z/c). (1.1.13)

We refer to these two polarizations as “plus” and “cross” because of how they a↵ect

masses, which can be seen in Fig. 1 and is touched on in the following subsection.

1.1.3 How GWs a↵ect test masses (and detector)2

The equations of motion for objects under the influence of gravity are the geodesic equa-

tions
d2x↵

d⌧ 2
= ��↵

µ⌫

dxµ

d⌧

dx⌫

d⌧
, (1.1.14)

where ⌧ is the proper time. The coordinate acceleration can be found by taking coor-

dinate time derivatives instead of proper time derivatives. Assuming linearized gravity

with the non-flat components of the metric dominated by a GW in the TT gauge, and

2The example used in this subsection is from Ref. [2]
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t = 0 t = T/4 t = T/2 t = 3T/4 t = T

h+

h×

×

Figure 1 : GWs in GR have two polarizations: plus (top) and cross (bottom). The proper separations
of particles in a ring will be a↵ected by a GW traveling into the page as depicted, where the axis is time
and T is the period of the GW.

assuming non-relativistic motion for a test-particle undergoing a coordinate acceleration,

Eq. (1.1.14) reduces to
d2xi

dt2
= ��i

tt

= 0. (1.1.15)

This does not mean that test particles are una↵ected by GWs. It just means that the

coordinate acceleration of test particles is zero in the TT gauge. This means that the TT

gauge is a gauge whose coordinates move with the GW, thus conserving the coordinate

separation between freely falling test particles.

To determine the proper separation between two test particles in the presence of a

GW, consider two test particles located on the x-axis at z = 0 and separated by coordinate

distance Lc. The proper distance between the two freely falling test particles is

L(t) =

Z
Lc

0

p
g

xx

dx (1.1.16)

=

Z
Lc

0

p
1 + hTT

xx

(t) dx (1.1.17)

⇡

1 +

1

2
hTT

xx

(t)

� Z
Lc

0

dx (1.1.18)

= Lc


1 +

1

2
hTT

xx

(t)

�
. (1.1.19)

The above integral was so easily computed because the coordinate separation does not
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8change over time for freely falling particles in the TT gauge. While GWs do not a↵ect

coordinate separations between freely falling particles, they do a↵ect proper separations.

Therefore, GWs can be directly observed by measuring the proper distance between freely

falling test masses, which can be accomplished with an interferometer.

To see this, consider a simple Michelson interferometer whose arms are aligned with

the x-axis and y-axis of a rectilinear coordinate system. Imagine that the beam splitter

is located at the origin of the coordinate system, and the two mirrors are located at

(x = L, y = 0, z = 0) and (x = 0, y = L, z = 0). We refer to the length of the

interferometer arm aligned with the x-axis as L
x

and the length of the interferometer

aligned with the y-axis as L
y

. The end mirrors can be considered to be the test masses

of the previous example, so the change in the proper separation between the end mirror

and the beam splitter along the x-axis is

�L
x

(t)

L
⇡ 1

2
hTT

xx

(t) ⇡ 1

2
h+(t). (1.1.20)

Likewise, the change in the proper separation between the end mirror and the beam

splitter along the y-axis is

�L
y

(t)

L
⇡ 1

2
hTT

yy

(t) ⇡ �1

2
h+(t). (1.1.21)

Therefore, the di↵erence in the arm lengths is

�L(t)

L
=

�L
x

(t)��L
y

(t)

L
⇡ h+(t). (1.1.22)

The quantity �L/L is called the GW strain.

GWs from astrophysical sources will not be perfectly aligned with an interferome-

ter. Instead, the interferometer will be a↵ected by some linear combination of the plus

and cross polarizations of the GW, which will depend on its sky location and relative

orientation to the instrument. In general, the GW strain is

�L

L
⇡ h(t) = F+(↵, �, , t)h+(t; ◆) + F⇥(↵, �, , t)h⇥(t; ◆), (1.1.23)

where the source’s sky position is given in terms of the right ascension ↵ and declination

�, ◆ is the inclination angle between the separation vector between the GW source and

the detector and a vector perpendicular to the polarization plane, and the polarization



www.manaraa.com

9angle  is the angle at which the polarization axis is rotated about the separation vector.

F+ and F⇥ are called the antenna patterns.

1.1.4 How GWs are generated

The source for GWs is the matter term on the right-hand side of the linearized Einstein

field equations

⇤h̄
↵�

= �16⇡G

c4
T

↵�

+ O(h2), (1.1.24)

where the higher-order terms O(h2) had not been previously indicated in Eq. (1.1.10).

The exact field equations can be written in terms of the e↵ective stress-energy tensor ⌧↵�

which treats the O(h2) terms as additional source terms to the linear perturbation:

⇤h̄
↵�

= �16⇡G

c4
⌧
↵�

. (1.1.25)

The solution to h̄
↵�

for the exact field equations can be found using a Green’s function,

and the solution is

h̄
↵�

(t, ~x) =
4G

c4

Z
⌧
↵�

(t� |~x� ~x0|/c, ~x0)
|~x� ~x0| d3~x0. (1.1.26)

This integral simplifies when analyzed in the “far zone”, which is where GW detectors

are located relative to astrophysical sources. The properties of the far zone are that the

size of the source R is much less than the GW wavelength �, which is much less than the

distance to the GW source D. In the far zone and exploiting an identity of the e↵ective

stress energy tensor, Eq. (1.1.26) becomes

h̄
ij

(t, ~x) ⇡ 2G

c4D
Ï
ij

(t�D/c), (1.1.27)

where the quadrupole tensor is defined

I
ij

(t) =

Z
x

i

x
j

⌧ 00(t, ~x) d3~x. (1.1.28)

In the TT gauge, the far-zone solution for the metric perturbation is

hTT
ij

(t) ⇡ 2G

c4D
ÏTT
ij

(t�D/c). (1.1.29)

Here, the transverse-traceless quadrupole tensor is

ITT
ij

(t) = P
ik

IklP
lj

� 1

2
P

ij

P
kl

Ikl, (1.1.30)
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10the transverse projection operator is

P
ij

= �
ij

� n̂
i

n̂
j

, (1.1.31)

and the unit vector in the direction of propagation is n̂
i

= x
i

/D.

1.1.5 Energy and angular momentum in GWs

There are two other useful relationships to review: the GW luminosity and the amount

of angular momentum radiated by a gravitating system. The GW stress-energy is given

by

TGW
↵�

=
c4

32⇡G

*
@hij

TT

@x↵

@hTT
ij

@x�

+
. (1.1.32)

The GW luminosity can be calculated from this quantity and is

L = �dE

dt
=

1

5

G

c5

D ...
I

ij

...
I ij

E
, (1.1.33)

where

I
ij

=

Z ✓
x

i

x
j

� 1

3
r2�

ij

◆
⌧ 00(t, ~x)d3~x. (1.1.34)

Note that ITT
ij

= ITT
ij

since the only di↵erence between the two quantities is that I
ij

is

traceless. From this, the amount of angular momentum radiated is

dJ
i

dt
= �2

5

G

c5
✏
ijk

D
Ïjl

...
I k

l

E
, (1.1.35)

where

✏
ijk

=

8
>>><

>>>:

+1 if (i, j, k) is (1, 2, 3), (3, 1, 2), or (2, 3, 1)

�1 if (i, j, k) is (3, 2, 1), (1, 3, 2), or (2, 1, 3)

0 if i = j, i = k, or j = k

. (1.1.36)

1.2 A couple astrophysical GW sources

(The entirety of this section closely follows [9].)

For my Ph.D. research, I have considered two types of GW sources: isolated, rotating

NSs and CBCs. In general, the GW strain as measured in an interferometric detector is

h = F+h+ + F⇥h⇥, (1.2.1)



www.manaraa.com

11The antenna patterns just depend on the source’s position in the sky and its relative

orientation to the detector. This section reviews the form of the two GW polarizations

h+ and h⇥ for isolated, rotating NSs and CBC systems.

1.2.1 Isolated rotating NS waveform and frequency evolution

An isolated, rotating NS can be modeled by a rotating ellipsoid. If the ellipsoid is not

axisymmetric, it will emit GWs because its quadrupole will change over time. The far-

zone solution to the linearized Einstein field equations is

hTT
ij

(t) =
2G

c4D
ÏTT
ij

(t�D/c). (1.2.2)

The second time derivative of the transverse-traceless quadrupole tensor for an ellipsoid

rotating about the z-axis with rotational frequency ⌫ observed at an inclination ◆ is

ÏTT
ij

= 8⇡2✏I⌫2

2

66664

�
⇣

1+cos2 ◆

2

⌘
cos(4⇡⌫t) cos ◆ sin(4⇡⌫t) 0

cos ◆ sin(4⇡⌫t)
⇣

1+cos2 ◆

2

⌘
cos(4⇡⌫t) 0

0 0 0

3

77775
,

where the ellipticity ✏ = (I1 � I2)/I, I3 ⌘ I, and I1, I2, and I3 are the principle axes of

inertia. Therefore, the GW takes the form

hTT
ij

=
16⇡2G✏I⌫2

c4D

2

66664

�
⇣

1+cos2 ◆

2

⌘
cos(4⇡⌫t) cos ◆ sin(4⇡⌫t) 0

cos ◆ sin(4⇡⌫t)
⇣

1+cos2 ◆

2

⌘
cos(4⇡⌫t) 0

0 0 0

3

77775
,

and the two polarizations are

h+(t) = �16⇡2G✏I⌫2

c4D

✓
1 + cos2 ◆

2

◆
cos(4⇡⌫t) (1.2.3)

h⇥(t) =
16⇡2G✏I⌫2

c4D
cos ◆ sin(4⇡⌫t). (1.2.4)

For the work presented in Ch. 2, it is important to note that the GW amplitude for such

systems is

h =
16⇡2G✏I⌫2

c4D
. (1.2.5)

An isolated, rotating NS will continuously slow down due to GW emission. The

amount of angular momentum radiated is

dJ

dt
= �1024⇡5

5

G

c5
✏2I2⌫5. (1.2.6)
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⌫̇ = �512⇡4

5

GI

c5
✏2⌫5. (1.2.7)

This assumes that the system only radiates angular momentum through GW emission.

1.2.2 CBC waveform

A compact binary coalescence can be modeled by two orbiting point particles (or black

holes) having component masses m1 and m2. Again, the quadrupole tensor changes over

time as the bodies orbit one another resulting in GW emission. The far-zone solution to

the linearized Einstein field equations is

hTT
ij

(t) =
2G

c4D
ÏTT
ij

(t�D/c). (1.2.8)

The second time derivative of the transverse-traceless quadrupole tensor for a CBC system

is

ÏTT
ij

= �2µv2

2

66664

⇣
1+cos2 ◆

2

⌘
cos 2� cos ◆ sin 2� 0

cos ◆ sin 2� �
⇣

1+cos2 ◆

2

⌘
cos 2� 0

0 0 0

3

77775
,

where µ = m1m2/M , M = m1 + m2, v = (⇡MGfgw)1/3, fgw is the GW frequency, and

the orbital phase � = !t = ⇡fgwt = v3t/(GM). Therefore, the GW takes the form

hTT
ij

= �4Gµ

c2D

⇣v

c

⌘2

2

66664

⇣
1+cos2 ◆

2

⌘
cos(2�(v)) cos ◆ sin(2�(v)) 0

cos ◆ sin(2�(v)) �
⇣

1+cos2 ◆

2

⌘
cos(2�(v)) 0

0 0 0

3

77775
, (1.2.9)

and the functional form for the system’s energy and luminosity can be used to solve for

�(v) and v in term of t.

Newtonian chirp waveform

In the Newtonian limit of GW, the energy and luminosity of a CBC system are

E(v) = �1

2
c2M⌘

⇣v

c

⌘2

(1.2.10)

L(v) =
32

5

c5

G
⌘2
⇣v

c

⌘10

, (1.2.11)
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13where ⌘ = µ/M . Since the luminosity is the amount of energy lost over time, L = �dE/dt.

Therefore, using this relationship and the chain rule,

dt

dv
=

dt

dE

dE

dv
= �E 0

L
, (1.2.12)

where the prime indicates a derivative with respect to v. Additionally, since � = !t =

v3t/(GM),
d�

dv
=

d�

dt

dt

dv
= � v3

GM

E 0

L
. (1.2.13)

Integrating Eqs. (1.2.12) and (1.2.13) to some reference v, vref , gives

t = tref +

Z
vref

v

E 0(u)

L(u)
du, (1.2.14)

� = �ref +

Z
vref

v

u3

GM

E 0(u)

L(u)
du. (1.2.15)

The binary loses energy to gravitational waves as its components orbit. The result is that

the orbit continually tightens and the orbital speed continually increases until the bodies

eventually coalesce. Using Eqs. (1.2.10) and (1.2.11) in Eqs. (1.2.14) and (1.2.15) and

solving for t(v) and �(v) where coalescence “c” is chosen for the reference “ref” gives

t(v) = tc �
5

256

GM

⌘c3

⇣v

c

⌘�8

, (1.2.16)

�(v) = �c �
1

32⌘

⇣v

c

⌘�5

. (1.2.17)

Inverting Eq. (1.2.16) to find v(t), substituting this into Eq. (1.2.17) to find �(t) = �(v(t)),

and putting v(t) and �(t) into Eq. (1.2.9) gives the GW perturbation as a function of

time. The two polarizations are

h+(t) = �GM
c2D


c3(tc � t)

5GM

��1/4 1 + cos2 ◆

2
cos

 
2�c � 2


c3(tc � t)

5GM

�5/8
!

,(1.2.18)

h⇥(t) = �GM
c2D


c3(tc � t)

5GM

��1/4

cos ◆ sin

 
2�c � 2


c3(tc � t)

5GM

�5/8
!

, (1.2.19)

where t < tc. This is referred to as a “chirp” waveform because its frequency and

amplitude both increase with time. If the wave properties were converted to sound,

it would chirp. The Newtonian chirp only depends on mass through the parameter

M = ⌘3/5M , which is referred to as the chirp mass.
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limit is given by Eqs. (1.2.1), (1.2.18), and (1.2.19). It is convenient to express h(t) in

terms of the time and phase at which the signal terminates in the detector instead of the

coalescence time and phase. To do this, realize that

h(t + t0) = F+(↵, �, , t + t0)h+(t + tc) + F⇥(↵, �, , t + t0)h⇥(t + tc), (1.2.20)

where t0 is the termination time. For a Newtonian chirp, this can be compactly written

in the following way:

h(t) = � GM
c2De↵


c3(t0 � t)

5GM

��1/4

cos

 
2�0 � 2


c3(t0 � t)

5GM

�5/8
!

, (1.2.21)

where

2�0 = 2�c � arctan

✓
F⇥
F+

2 cos ◆

1 + cos2 ◆

◆
(1.2.22)

De↵ = D

"
F 2

+

✓
1 + cos2 ◆

2

◆2

+ F 2
⇥ cos2 ◆

#�1/2

, (1.2.23)

t < t0, and F⇥,+ = F⇥,+(↵, �, , t). Here, �0 is the phase at termination. The e↵ective

distance De↵ is a distance parameter that takes into account the relative orientations of

the binary and detector. If the binary and detector are optimally oriented, De↵ = D,

otherwise De↵ > D.

The CBC waveform is often written in the frequency domain. The Fourier transform

of the Newtonian chirp waveform under the stationary phase approximation is

h̃(fgw) =

r
5⇡

24

G2M2

c5De↵


⇡MGfgw

c3

��7/6

exp [�i (fgw)] , (1.2.24)

where

 (fgw) = 2⇡fgwtc � 2�c �
⇡

4
+

3

128


⇡MGfgw

c3

��5/3

. (1.2.25)

The Fourier transform conventions used here and in the rest of this dissertation are

x̃(f) =

Z 1

�1
x(t)e�2⇡iftdt (1.2.26)

x(t) =

Z 1

�1
x̃(f)e2⇡iftdt. (1.2.27)
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151.2.3 Post-Newtonian chirp waveform

Eqs. (1.2.24)–(1.2.25) and (1.2.21)–(1.2.23) model the inspiral portion of the CBC wave-

form in the time domain (TD) and the frequency domain (FD) at Newtonian order.

However, the systems ground-based interferometers are most sensitive to will be relativis-

tic and strongly gravitating. Post-Newtonian (PN) theory adds relativistic corrections

to the Newtonian results presented in Sec. 1.2.2. The GR equations of motion are ex-

panded in orders of the characteristic speed of the system. The CBC waveform becomes

more accurate at high frequencies by adding more PN correction terms to the Newtonian

waveform.

PN corrections to the CBC energy and luminosity functions have been calculated to

3.5PN order [10]:

E(x) = �1

2
c2M⌘x


1�

✓
3

4
+

1

12
⌘

◆
x

�
✓

27

8
� 19

8
⌘ +

1

24
⌘2

◆
x2

�
✓

675

64
�
✓

34445

576
� 205

96
⇡2

◆
⌘ +

155

96
⌘2 +

35

5184
⌘3

◆
x3

�
(1.2.28)

L(x) =
32

5

c5

G
⌘2x5


1�

✓
1247

336
+

35

12
⌘

◆
x + 4⇡x3/2

�
✓

44711

9072
� 9271

504
⌘ � 65

18
⌘2

◆
x2 �

✓
8191

672
+

583

24
⌘

◆
⇡x5/2

+

✓
6643739519

69854400
+

16

3
⇡2 � 1712

105
� � 856

105
ln(16x)

+

✓
41

48
⇡2 � 134543

7776

◆
⌘ � 94403

3024
⌘2 � 775

324
⌘3

◆
x3

�
✓

16285

504
� 214745

1728
⌘ � 193385

3024
⌘2

◆
⇡x7/2

�
. (1.2.29)

Here, the PN order corresponds to the highest power of the PN expansion parameter

x = (⇡MGfgw/c3)2 in the square brackets (i.e. beyond leading Newtonian order) and

� = 0.5772156649 . . . is the Euler constant.

The PN expansion of the energy and luminosity are used as inputs for finding the

form of the PN CBC waveform, much like was done in Sec. 1.2.2. As will be shown in

Sec. 4.A, this can be done in several ways.

PN waveforms are a good approximation to the inspiral portion of the complete CBC
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are commonly used to model BNS waveforms, which have very long inspiral portions and

typically merge out-of-band, meaning at frequencies so high that shot noise dominates

over signal (see Sec. 1.3). However, PN models are not e↵ective at modeling BBH and

IMBHB systems where merger happens in-band and therefore the merger and ringdown

portion of the waveform become much more important. For these systems, e↵ective-one-

body waveforms calibrated to NR simulations are typically used instead [11].

1.2.4 E↵ective-one-body CBC waveform

E↵ective-one-body (EOB) waveforms are found by joining an inspiral waveform to a

merger-ringdown waveform. The two-body CBC problem is first cast into an e↵ective-

one-body problem, much like what is done in classical mechanics. A PN resummed

Hamiltonian is used to find the orbital evolution of the inspiral portion of the waveform

[12]. The later stages of the inspiral right before merger can be adjusted to more closely

match NR simulations by adding pseudo 4PN and pseudo 5PN coe�cients and calibrating

their values so that the waveform matches these simulations. EOB waveforms calibrated

in this way are called EOBNR waveforms. A superposition of BH quasi-normal modes

are used to construct the merger-ringdown waveform. The inspiral and merger-ringdown

waveforms are then joined near the time at which the EOB orbital frequency is at a

maximum [11].

EOBNR waveforms describe all three phases of a CBC signal and match high-accuracy

NR simulations. However, they are relatively expensive to compute compared to the

Taylor-expanded PN waveforms. Typically, Taylor-expanded PN waveforms are used to

model BNSs and EOBNR waveforms are used to model BBH waveforms.

1.3 Dominant LIGO noise components

The entirety of this dissertation is geared toward searching for GWs in LIGO-VIRGO data

and estimating source parameters or source population parameters given detection. To

do this, GW signal models are compared to the data to check how well the models match

the data, essentially comparing how much signal is in the noise. Therefore, it is important
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do this through the power spectral density (PSD) and the amplitude spectral density

(ASD).

The one-sided power spectral density S of a detector is defined by

S(|f |)1
2
�(f � f 0) = hñ⇤(f 0)ñ(f)i, (1.3.1)

where the h. . . i is an ensemble average over noise realizations. The ASD is the square

root of the PSD. Fig. 2 plots sample ASDs from initial and enhanced LIGO and the

design ASD for aLIGO.

Figure 2 : The ASD for iLIGO and eLIGO, and the anticipated design ASD for aLIGO.

The distinct shape of the ASD is mainly the result of the following three dominant

noise components, from which all ground-based interferometric detectors su↵er.

1. Seismic noise: Seismic noise refers to Earth-based activity that vibrates an in-

terferometer’s end mirrors resulting in detector noise. Seismic vibrations typically

manifest at low frequencies (up to tens of Hertz) and cause the steep low-frequency

wall in the ASD. Examples of seismic activity known to a↵ect the LIGO instruments

include earthquakes, nearby tra�c, airplanes, logging, and tumbleweed, but LIGO

is mostly a↵ected by microseismic activity. Great e↵ort has been taken to isolate
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system. Using a pendulum system introduces noise at the harmonic frequencies of

the suspension wires. However, these noise spikes, which are clearly visible in the

ASD, are extremely narrow and well-understood.

2. Thermal noise: The Brownian motion of particles in the suspension wires and in

the end mirror coatings changes the e↵ective arm length of the instrument. Since the

amount of motion depends on temperature, this is called thermal noise. Thermal

noise is dominant in the mid-frequency range from tens of Hertz to hundreds of

Hertz. High-quality mirrors and suspension wires are used to minimize this noise

source.

3. Shot noise: The interferometer measures changes in the light detected at a pho-

todiode due to changes in the length of the interferometer arms. A photodiode

essentially counts the number of photons hitting it over time, which is a Poisson

process. Since it is a Poisson process, there is noise associated with this counting

process, and this noise is called shot noise. Shot noise dominates at high frequencies

(above roughly 100 Hz). A technique referred to as squeezing light can reduce the

e↵ects shot noise.
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Chapter 2

Continuous Gravitational Waves

from Isolated Galactic Neutron

Stars in the Advanced Detector Era1

2.1 Background and motivation

Isolated neutron stars with non-axisymmetric deformations will continuously emit gravi-

tational waves as they rotate [14]. Neutron stars also have strong dipolar magnetic fields

that accelerate particles to relativistic energies [15]. Since these neutron stars can lose en-

ergy through the emission of electromagnetic and gravitational radiation, their rotational

frequency slowly decreases over time. The gravitational wave strain amplitude of rotat-

ing neutron stars has a strong dependence on the star’s rotational frequency. Though

no gravitational wave detection has yet been reported, rapidly rotating isolated Galactic

neutron stars are one of the most promising sources of continuous gravitational waves for

ground based gravitational wave detectors.

Attempts to assess the detectability of gravitational waves from the Galactic neutron

star population began with rough analytic estimates. An argument presented in Ref. [16]

by Thorne but credited to Blandford models the Galactic neutron star population as a

uniformly populated two-dimensional disk of gravitars (neutron stars with gravitationally

1This chapter was published in Ref. [13]
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tic model, he estimated a rough upper bound on the possible gravitational wave strain

amplitude from a Galactic neutron star, hmax ⇠ 10�25 [16]. Blandford also surprisingly

observed that the maximum gravitational wave amplitude is independent of the size of

the star’s deformation and rotational frequency. His argument was revised in Ref. [17]

and again in Ref. [18], which both found hmax ⇠ 10�24.

This work was followed by more comprehensive attempts to assess the detectability

of the Galactic neutron star population through population synthesis. If the neutron

star population can be accurately simulated, then the detectability of Galactic neutron

stars can be determined. In Ref. [19] Palomba was the first to assess the detectability of a

simulated gravitar population by first and second generation gravitational wave detectors.

He incorporated realistic spatial, age, birth frequency, and kick velocity distributions, as

well as a possible ellipticity distribution (though this is still largely unconstrained [19]).

He estimated the fraction of the neutron star population that would likely have to be

gravitars in order for first or second generation detectors to make a direct gravitational

wave detection. Continued e↵orts by Knispel and Allen extended Blandford’s argument to

a simulated gravitar population similar to Palomba’s [18]. They found that the maximum

gravitational wave strain amplitude does have a strong dependence on the star’s frequency

and size of deformation when considering a more realistic neutron star population. They

set upper bounds, which depend on the population’s ellipticity (a measure of a star’s

deformation) and rotational frequency, on the gravitational wave strain amplitude of the

nearest source.

In this chapter, we include electromagnetic emission as well as gravitational wave

emission in the frequency evolution of neutron stars and investigate its e↵ect on the

population’s detectability. We use the simulated neutron star population in Ref. [18]

and assign every neutron star a dipolar magnetic field as well as an ellipticity. We

then allow each star’s frequency to evolve through the emission of both gravitational

and electromagnetic radiation. The chapter is organized as follows. In Section 2.2 we

review the spin and strain evolution of neutron stars and revisit the upper bounds from

the gravitar case. In Section 2.3 we outline a Monte Carlo simulation used to assess
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bound the magnetic field strength and ellipticity parameter space of isolated neutron

stars with or without a direct gravitational wave detection. In Section 2.4 we present a

rough analytic argument to which we compare our numerical results. In Section 2.5 we

summarize our main results.

2.2 Spin and strain evolution of neutron stars

We use the simulated neutron star population from Ref. [18] to assess the detectability

of gravitational waves emitted by isolated Galactic neutron stars. It is important to note

that, while the simulated population does not explicitly include recycled millisecond pul-

sars, it does not necessarily exclude them either. Each star in our population is assigned

a birth frequency, initial position, kick velocity, and age. Stars are then independently

evolved through the Galaxy’s gravitational potential (see Ref. [18] for a more detailed

description of the population). Therefore an old star that has been recently recycled can

just be thought of as a young star born with a high frequency. We also consider a large

enough range in magnetic field strength to accommodate recycled pulsars. In this section,

we review methods to find the spin frequency and gravitational wave strain amplitude of

each star in our simulated population in order to assess its detectability.

If neutron stars only lose energy through gravitational and electromagnetic emission,

their rotational frequency evolution is given by

⌫̇ = �512⇡4

5

GI

c5
✏2⌫5 � 8⇡2

3

R6

c3I
B2 sin2 ↵ ⌫3, (2.2.1)

in Gaussian units [18; 20; 21]. Here, G is the gravitational constant, c is the speed

of light, ⌫ is the star’s rotational frequency, R is the star’s radius, I = kMR2 is the

moment of inertia about its rotational axis with M being the star’s mass and k ⇡ 2/5

[15], ✏ = (I1�I2)/I is the ellipticity with I1 and I2 being the moments of inertia about the

star’s other two principle axes, B is the dipolar magnetic field strength at the magnetic

equator, and ↵ is the angle between its magnetic pole and its axis of rotation2. We choose

2The second term in Eq. (2.2.1), which is the frequency evolution due to electromagnetic emission, is

derived from the simple model of a rotating dipole. In Ref. [22] Spitkovsky corrects this term such that a
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we only concern ourselves with order of magnitude estimates, we set sin2 ↵ = 1.

Eq. (2.2.1) can be solved analytically for ⌫(t, ⌫0) in the limits where ✏ = 0 or B = 0.

If B = 0, a neutron star will only emit gravitationally. Its frequency is

⌫(t, ⌫0) =
�
⌫0
�4 � 4�gwt

��1/4
, (2.2.2)

where t is the neutron star’s age, ⌫0 = ⌫(t = 0) is the neutron star’s birth frequency,

and �gw = �512⇡4GIc�5✏2/5. Eq. (2.2.2) is a good approximation for the frequency of

a gravitar. The characteristic timescale (the approximate time for a neutron star with

birth frequency ⌫0 � ⌫ to spin down to a frequency ⌫) for gravitationally dominated

emission is

⌧gw = � ⌫

4⌫̇
⇡ 290 Myrs

✓
10�7

✏

◆2✓100 Hz

⌫

◆4

. (2.2.3)

If ✏ = 0, a neutron star will only emit electromagnetically. Its frequency is

⌫(t, ⌫0) =
�
⌫0
�2 � 2�dipt

��1/2
, (2.2.4)

where �dip = �8⇡2R6c�3I�1B2 sin2 ↵/3. Eq. (2.2.4) is a good approximation for the

frequency of a neutron star whose evolution is dominated by electromagnetic emission

and whose characteristic timescale is

⌧dip = � ⌫

2⌫̇
⇡ 1, 600 yrs

✓
1012 G

B

◆2✓100 Hz

⌫

◆2

. (2.2.5)

While ✏ is unknown, the dramatically di↵erent timescales between Eqs. (2.2.3) and (2.2.5)

illustrate the di�cultly in detecting isolated neutron stars: stars with reasonable magnetic

fields spin down to low frequencies too rapidly to detect. Therefore, gravitational wave

detectors will likely only detect neutron stars with small magnetic fields or young neutron

stars that have not yet spun down to low frequencies.

Not all neutron stars will have their frequency evolution dominated by either gravita-

tional or electromagnetic emission. For these stars, ⌫̇ cannot be integrated over time to

solve for an analytic solution for ⌫(t, ⌫0|✏, B). However, Ref. [18] shows that Eq. (2.2.1)

can instead be inverted to solve for t(⌫, ⌫0|✏, B). Following Ref. [18], we rewrite Eq. (2.2.1)

neutron star will still emit electromagnetically even if its magnetic pole and rotational axis are aligned.
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⌫̇ = �gw⌫
5 + �dip⌫

3 (2.2.6)

= �dip

�
�⌫5 + ⌫3

�
, (2.2.7)

where � = �gw/�dip. Eq. (2.2.7) can be solved for

t(⌫, ⌫0) =
1

2|�dip|


⌫0

2 � ⌫2

⌫0
2⌫2

+ � ln

✓
⌫2

⌫0
2

✓
1 + ⌫0

2�

1 + ⌫2�

◆◆�
. (2.2.8)

If ⌫0, t, �gw, and �dip are known, Eq. (2.2.8) can be solved numerically to find ⌫ using

root finding techniques [23].

The strain amplitude of gravitational waves emitted by a neutron star at a radial

distance r away from a detector is given by

h = 16⇡2GI

c4

✏⌫2

r
(2.2.9)

⇡ 4⇥ 10�25
⇣ ✏

10�7

⌘⇣ ⌫

100 Hz

⌘2
✓

1 kpc

r

◆
, (2.2.10)

assuming that the neutron star’s sky location intersects a line normal to the plane of the

detector arms and its axis of rotation is parallel to that line (optimal mutual orientation).

Since we only concern ourselves with order of magnitude estimates, we assume optimal

mutual orientation for all neutron stars [18], which overestimates the detectable amplitude

by about a factor of four on average.

For a population of neutron stars whose radial distance from Earth r, age t, birth

frequency ⌫0, ellipticity ✏, and magnetic field strength B are known, Eq. (2.2.2), (2.2.4),

or (2.2.8) can be used to determine each star’s spin frequency ⌫. Eq. (2.2.2) is used when

�gw⌫5 � �dip⌫3, which we conservatively choose to be when � > 40 s2; Eq. (2.2.4) is

used when �gw⌫5 ⌧ �dip⌫3, which we conservatively choose to be when � < 4 ⇥ 10�9 s2;

Eq. (2.2.8) is used otherwise3. Eq. (2.2.9) can further be used to determine each star’s

gravitational wave strain amplitude h as measured in our detector. We compare each

star’s frequency and strain amplitude to a scaled gravitational wave detector’s noise curve

3To determine the two � cuto↵s, we assume that one term will dominate over the other if it is at least

three orders of magnitude greater than the other. Eq. (2.2.2) can be used when � � 1/⌫2. Therefore, we

choose � > 103/⌫2 = 40 s2 for ⌫ = 5 Hz. Eq. (2.2.4) can be used when � ⌧ 1/⌫2. Therefore, we choose

� < 10�3/⌫2 = 4⇥ 10�9 s2 for ⌫ = 500 Hz.
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derive the scaling factor in Section 2.3.

While Eq. (2.2.9) for the gravitational wave strain amplitude h does not depend

explicitly on the magnetic field, B does help to determine ⌫ through Eq. (2.2.1). There

are two related e↵ects. First, Figure 3 shows that, all other things being equal, neutron

stars with large magnetic fields will spin down to low frequencies (high periods) much

faster than neutron stars with small magnetic fields. Consequently, large magnetic fields

will result in smaller and smaller gravitational wave amplitudes over time. Second, since

gravitational wave detectors are sensitive to finite frequency ranges, neutron stars with

large magnetic fields will rapidly spin through a detector’s sensitive frequencies, which

makes them less likely to be detected. Therefore, neutron stars with small magnetic fields

are more likely to be detected than neutron stars with large magnetic fields. In this way,

assuming we know the population’s ellipticity, we can place lower bounds on the magnetic

field of neutron stars in the absence of a gravitational wave detection.

We can gain intuition into the detectability of Galactic neutron stars by setting B = 0.

This places an upper bound on h for fixed ✏ values. In Figure 4, we plotted the maximum

gravitational wave strain amplitude hmax versus gravitational wave frequency f = 2⌫ of

the simulated neutron star population presented in Ref. [18] with B = 0 and ✏ = 10�9,

10�8, 10�7, and 10�6. A single point (f, hmax) corresponds to the population’s maximum

gravitational wave amplitude hmax measured in the frequency band [f, ef ] where e is

Euler’s number.4

Our numerical result in Figure 4 is consistent with the result in Ref. [18], which

was derived using a semi-analytical integration technique. Considering a distribution

in frequency and a three-dimensional spatial distribution results in a clear dependence

of hmax on both frequency and ellipticity [18]. The e↵ect of the frequency distribution

manifests itself in the overall shape of the four curves in Figure 4. Since stars with

large ellipticities spin down much faster than stars with small ellipticities (Eq. (2.2.3)),

4To find hmax, we considered 200 logarithmically spaced overlapping frequency bands and constructed

histograms for the strain amplitude from the neutron stars in each band. We then solved for hmax using a

linear fit in log10-space to the tail (largest h values) of each histogram. We used this method to minimize

statistical fluctuations.
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Figure 3 : This figure shows the period evolution of neutron stars. The dots represent observed pulsars
from the ATNF catalog [24]. The thin, negatively sloped solid contours are lines of constant magnetic
field strength (labels on the left), and the thin, positively sloped dotted contours are lines of constant
characteristic age (labels on the right) assuming only electromagnetic emission. The thick, solid lines
with square ticks track the period evolution of a neutron star that emits both electromagnetic and
gravitational radiation. These lines, which are labelled by the logarithm of the star’s magnetic field
in units of Gauss, correspond to a neutron star with ✏ = 10�7 (all lines) and B = 108.5 � 1011 with
steps of 1/2 dex. The square ticks represent logarithmic steps in age. The leftmost tick labels t = 0,
and the subsequent ticks range from t = 104 � 109 yrs. The thick, dashed lines, which are labelled by
the logarithm of the star’s magnetic field in units of Gauss, are characteristic aLIGO sensitivity curves
for neutron stars with ✏ = 10�7 located 100 pc away from Earth. Neutron stars below their associated
aLIGO sensitivity curve are undetectable. Neutron stars with large magnetic fields spin down to low
frequencies (high periods) much faster than stars with small magnetic fields; consequently, they spend
less of their lives emitting gravitational waves with frequencies that aLIGO is most likely to detect.

a neutron star population with large ellipticities more densely populates low frequency

bands than a neutron star population with small ellipticities. Therefore, while each curve

in Figure 4 has a similar shape, the large ellipticity curves are shifted to the left relative

to the small ellipticity curves. The subtle kink in the ✏ = 10�9 and 10�8 curves between

the nearly flat, high frequency region and the more positively sloped, low frequency

region corresponds to a kink in the population’s frequency distribution, which is described

in Ref. [18].5 The ✏ = 10�7 and 10�6 curves also exhibit the same behavior but at

5Since we consider a continuous distribution in birth frequency, and a single star cannot be older than

the Galaxy, neutron stars with high birth frequencies will not have existed long enough to have spun
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Figure 4 : We plot the maximum gravitational wave strain amplitudes hmax as a function of gravitational
wave frequency f = 2⌫ of a population of gravitars (neutron stars with B = 0) with ✏ = 10�9, 10�8,
10�7, and 10�6. A single point (f, hmax) corresponds to the population’s maximum gravitational wave
amplitude hmax measured in the frequency band [f, ef ]. We used the gamma initial radial distribution
from Ref. [18] to simulate the neutron star population.

smaller frequencies than those plotted. If we had considered a two-dimensional spatial

distribution, hmax would have been independent of the ellipticity in the region to the right

of the kink. Here, the frequency distribution is in a nearly steady state. Considering

a three-dimensional spatial distribution breaks this degeneracy between hmax and the

population’s ellipticity. Note that the gravitational wave strain amplitude will decrease

when magnetic fields are considered.

2.3 Neutron-star detectability and constraints

To assess the detectability of the Galactic neutron star population, we use the methods

outlined in Section 2.2 to find the spin frequency ⌫ and gravitational wave strain ampli-

tude h of every neutron star in our simulated population. The population used in our

analysis is described in detail in Ref. [18]. Although [18] presents three di↵erent initial

down past a certain frequency. Neutron stars will accumulate near this frequency causing a kink in the

population’s frequency distribution, as seen in Ref. [18].
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distribution”. We expect minimal deviation in our results if we were to consider the other

two distributions presented in Ref. [18]. The code that creates our simulated population

provides the final position, which is easily turned into a distance from Earth r, and age

t of each neutron star. Since a star’s magnetic field strength B and ellipticity ✏ dictate

its frequency evolution, we must also choose what values of each to assign to the stars

in our population. We fix ✏ and B to a single value so that every neutron star in our

population has the same ✏–B combination. While this approach will not mimic a realis-

tic neutron star population, it is an important first step that provides valuable intuition

for considering a more realistic population in the future. Lastly, we assign each star a

birth frequency ⌫0 = 1/P0, where P0 is randomly drawn from the lognormal birth period

distribution in Ref. [18]:

⇢P0(P0) =
1p

2⇡�P0

exp


� 1

2�2

�
ln P0 � ln P̄0

�2
�

.

Here, P0 > 0.5 ms is the birth period, P̄0 = 5 ms is the mean, and � = 0.69 is the

standard deviation. Given r, t, ⌫0, ✏, and B, we can use the methods outlined in Section

2.2 to find ⌫(t, ⌫0|✏, B) and h(r, ⌫|✏) for every neutron star in our simulated population.

Once ⌫ and h are found for every neutron star, we can determine whether or not

we expect a gravitational wave detector to detect our population. For simplicity, we

only consider detection by a single Advanced Laser Interferometer Gravitational-wave

Observatory (aLIGO) detector. We use the aLIGO noise curve for a single detector from

Ref. [25], which is the expected sensitivity of aLIGO as a function of gravitational wave

frequency. To estimate the strain, we assume that we have a year of aLIGO data, and

that the data is analyzed coherently in short 72 hr stretches, with the short stretches

combined incoherently. This assumes the LIGO Scientific Collaboration will be doing

similar searches to the ones currently done by Einstein@Home [26] in the aLIGO era. An

overall trials factor of 100 is applied, which is considered a conservative estimate. We

then compare each neutron star to the estimated noise curve to determine the number

of neutron stars in our population that aLIGO will be able to detect. We assume that a

neutron star will be detected if its strain is above the aLIGO noise curve. To assess the
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Figure 5 : Contours of log10 n (described in Section 2.3) with respect to (log10 B, log10 ✏), which illustrate
the expected detectability of the neutron star population with various ✏ and B combinations. Our analysis
was performed on populations with logarithmic spacings of 1/8 dex in ✏ and B. The dashed lines are the
analytic approximations for log10 n described in Section 2.4. We plot three results: log10 n = �7,�8,�9,
respectively from left to right. The dotted lines show the boundaries that separate where the analytic
argument’s assumptions are valid from where they are not (Section 2.4). They only hold for detectable
neutron stars that are young (tmax . 10 Myrs), found above the horizontal dotted line, and dominated
by electromagnetic emission (⌧dip . ⌧gw), found to the right of the positively sloped dotted line.

detectability of the neutron star population, we construct the fraction

n =
Ndet

Nsim

, (2.3.1)

where Nsim is the number of stars in the simulated population, and Ndet is the number

of stars aLIGO can detect from this population. To reduce statistical fluctuations, we

simulate many more neutron stars than are actually expected to be in our Galaxy. Multi-

plying this fraction n by the number of neutron stars in our Galaxy Ngal gives the number

of detectable neutron stars in our Galaxy. If n ·Ngal is greater than or equal to one, the

population will likely be detectable; if it is less than one, the population will likely be

undetectable. In Figure 5, we plot contours of log10 n with respect to (log10 B, log10 ✏),

illustrating the expected detectability of the neutron star population with various ✏ and

B combinations.

We can further use our results (Figure 5) to place bounds on the ✏–B parameter
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n ·Ngal = 1 is the boundary above which the ✏–B parameter space is disallowed, assuming

(pessimistically) no aLIGO detection of continuous gravitational waves associated with a

Galactic neutron star. In this way, Figure 5 sets lower bounds on B for fixed ✏ values (or

upper bounds on ✏ for fixed B values) if aLIGO does not make an isolated neutron star

detection. For instance if Ngal ⇠ 109 [19], and we assume neutron stars have a typical

ellipticity of ✏ ⇠ 10�7 [19], Figure 5 shows that the minimum magnetic field strength of

Galactic neutron stars is B & 1011 G in the absence of an aLIGO detection. Conversely

if Ngal ⇠ 109, and we assume neutron stars have a typical magnetic field strength of

B ⇠ 1011 G, Figure 5 shows that the population’s maximum ellipticity is ✏ . 10�7 in the

absence of an aLIGO detection. This argument also applies if aLIGO does make isolated

neutron star detections. If Ngal ⇠ 109, and we assume neutron stars have ✏ ⇠ 10�7, then

the minimum magnetic field strength of Galactic neutron stars is B & 1010 G if aLIGO

detects 10 neutron stars. Conversely if Ngal ⇠ 109, and we assume neutron stars have

B ⇠ 1010 G, then the population’s maximum ellipticity is ✏ . 10�7 if aLIGO detects 10

neutron stars.

2.4 Analytic results

In all previous sections, we used numerical methods to assess the detectability of Galactic

neutron stars and place constraints on the properties of the Galactic neutron star popu-

lation. In this section, we present an analytical approach to setting bounds on the ✏–B

parameter space of the Galactic neutron star population. Blandford’s analytic argument

considers neutron stars that emit only gravitationally. Our analytic argument, while still

simplistic, applies to stars dominated by electromagnetic emission.

We first use the aLIGO sensitivity curve described in Section 2.3 to constrain the

volume around Earth in which detectable neutron stars must be contained. If a neutron

star is detected, it will tend to be at or near the detector’s most sensitive frequency,

which we call ⌫det. For simplicity, we assume that a neutron star must have ⌫ ⇡ ⌫det to

be detected. Therefore, a neutron star will be detected by a ground-based gravitational

wave detector if h(⌫det) > hdet, where hdet is the value of the strain amplitude for which
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Figure 6 : The top plot is a typical sensitivity curve of a ground-based gravitational wave detector. We
assume that isolated neutron stars with h(⌫det) > hdet will be detected. Below are diagrams of the Milky
Way disk. The black dot is Earth’s location within the Milky Way disk. The two volumes Vmax outlined
by dotted lines are the maximum volumes within which detectable neutron stars can be contained. Vmax

will be the volume of a sphere if rmax < HMW (top diagram), and Vmax will be the volume of a spherical
segment if rmax > HMW (bottom diagram). See Section 2.4.

the detector is most sensitive (see Figure 6). This detectability condition, along with

Eq. (2.2.9), translates into a constraint on the distance from Earth of detectable neutron

stars. The maximum distance rmax at which a neutron star with ⌫ = ⌫det could be

detected is:

rmax = 16⇡2GI

c4

✏⌫2
det

hdet

. (2.4.1)

The detectability condition also translates into a constraint on the volume that en-

closes detectable neutron stars. First, we assume that neutron stars are born uniformly

throughout the Galactic stellar disk at a constant rate N , which is the number of births

per unit time. The volume of the Milky Way, which we approximate to be a disk, is

roughly

VMW = ⇡R2
MW(2HMW), (2.4.2)

where RMW is the radius of the Galactic disk, and HMW is half its height (Figure 6). The

volume contained in rmax will be a sphere for rmax < HMW. However, for rmax > HMW, the
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the top and bottom surfaces of the Milky Way disk, as illustrated in Figure 6. This shape

is called a spherical segment. Therefore, the maximum volume Vmax in which neutron

stars with ⌫ = ⌫det could be detected is:

Vmax =

8
<

:

4
3
⇡r3

max rmax < HMW

2
3
⇡HMW (3r2

max �H2
MW) rmax > HMW

. (2.4.3)

From the constraint on the volume that encloses detectable neutron stars of frequency

⌫ = ⌫det, we can find the minimum allowed magnetic field strength in the absence of an

isolated neutron star detection. Remembering our constant birth rate assumption, the

average time tmax between neutron star births into the volume Vmax is

tmax = N�1
max =

VMW

Vmax

N�1, (2.4.4)

assuming a uniform spatial distribution. In order to ensure a neutron star detection, at

least one star within the volume Vmax must have ⌫ > ⌫det at all times. This will be the

case if ⌫(tmax) > ⌫det, because a neutron star spinning down below ⌫det will always be

accompanied by a new star being born into the volume Vmax. Likewise, we also assume

that, on average, when a detectable neutron star escapes Vmax due to its motion in the

Galaxy, another detectable neutron star will enter Vmax. Assuming that a neutron star’s

frequency evolution is dominated by dipolar emission, we solve for the minimum magnetic

field strength Bmin below which a neutron star detection is not guaranteed by substituting

tmax into Eq. (2.2.4) and solving for B:

Bmin(✏, hdet, ⌫det) =

8
<

:
Bsphere

min rmax < HMW

Bsph.seg.

min rmax > HMW

, (2.4.5)

where

Bsphere
min =

32⇡2⌫2
detI

2✏3/2

⌫0R3h3/2
det

s
⇡G3N
c9VMW
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det)
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min =
cHMW

2R3⌫0⌫det

r
cINHMW

2⇡VMW

(⌫2
0 � ⌫2

det)


768⇡4G2I2✏2⌫4

det

c8h2
detH

2
MW

� 1

�1/2

.

Neutron stars with B > Bmin in Vmax will spin down to ⌫ < ⌫det before another star

is born into Vmax. Therefore, in the absence of an aLIGO detection, B = Bmin is the
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values, since B < Bmin ensures a detection.

Our argument is easily extended to the case of Ns neutron star detections. To do

this, we solve for when ⌫(Nstmax) > ⌫det. The result adds a factor of N�1/2
s in front of

Eq. (2.4.5).

We have made several assumptions in setting up our analytical argument. It is im-

portant to emphasize two of our argument’s most crucial assumptions in order to clearly

outline the physical systems for which our argument holds. The first crucial assumption is

that the spatial distribution of neutron stars in the Milky Way is a uniform cylinder. Neu-

tron stars will di↵use out of the Galactic disk due to Galactic acceleration and their kick

velocities. The timescale for this process is found by dividing the average kick velocity in

Ref. [18] by the gravitational acceleration (found by dividing the gravitational potential in

Ref. [18] by the length scale). Therefore, our argument holds when tmax . 10 Myrs. The

second crucial assumption is that the frequency evolution of neutron stars is dominated

by dipolar emission. Therefore, for ⌫0 � ⌫, our argument holds when ⌧dip . ⌧gw.

In Figure 5, we have plotted the relationship in Eq. (2.4.5) (with the factor of N�1/2
s in

front) as dashed lines on top of our numerical results. We use ⌫det ⇡ 100 Hz and hdet ⇡

6.0 ⇥ 10�26, which approximately corresponds to aLIGO’s most sensitivity strain and

associated frequency, and RMW ⇡ 15 kpc, HMW ⇡ 75 pc, and ⌫0 ⇡ 850 Hz, where RMW,

HMW, and ⌫0 are estimated averages of the spatial and period distributions in Ref. [18]

found by reducing the maximum values by a factor of e�1. We also use N ⇡ 0.02 years�1

[27]. Our numerical results should roughly follow these dashed lines, which correspond

to n = 10�7, 10�8, 10�9, respectively from left to right. The analytic results only hold

for detectable neutron stars that are young (tmax . 10 Myrs), which corresponds to

the region above the horizontal dotted line, and dominated by electromagnetic emission

(⌧dip . ⌧gw), which corresponds to the region to the right of the positively sloped dotted

line. There is good agreement between our numerical and analytic results, except in the

transition region near the dotted boundaries where the analytic assumptions start to lose

their validity. While the rough numerical values chosen for the parameters in our analytic

argument can change the overall normalization of the analytic curves, the shape of the
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Figure 7 : Extends our analytic argument to any gravitational wave detector. Eq. (2.4.5) is plotted as
solid contours of log10 B with respect to (log10 hdet, log10 ✏), where B is in units of Gauss. The dashed
and dotted lines show the boundaries that separate where our analytic argument’s assumptions are valid
from where they are not. Our argument does not hold in the gray, shaded regions; our argument does

hold for neutron stars that are young (tmax . 10 Myrs), found below the dotted line (tmax = 10 Myrs),
and dominated by electromagnetic emission (⌧dip . ⌧gw), found below the dashed line (⌧dip = ⌧gw).

curves closely match the shape of the numerical contours.

While we only consider detection by aLIGO in our numerical analysis, our analytical

approach easily extends to any gravitational wave detector. Notice that in Eq. (2.4.5)

Bmin is a function of ✏, hdet, and ⌫det. Therefore, we fix ⌫det and plot contours of log10 Bmin

with respect to (log10 ✏, log10 hdet) in Figure 7 to illustrate how our argument extends to

other detectors.

It also seems natural to extend our argument to the gravitar case, in which the fre-

quency evolution of neutron stars is dominated by gravitational emission, by solving

Eq. (2.2.2) for Bmin under the assumption that ⌧gw . ⌧dip. However, detectable grav-

itars can be older than 10 Myrs, thus violating our assumption that tmax . 10 Myrs.

Therefore, these methods cannot be applied to the gravitar case.
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We have used the methods described in Section 2.2 to find the gravitational wave ampli-

tude and spin frequency of every neutron star in the simulated population described in

Ref. [18]. This involved allowing for both electromagnetic and gravitational emission in a

neutron star’s frequency evolution (Eq. (2.2.1)). We then solved for each neutron star’s

frequency using either Eq. (2.2.2), (2.2.4), or (2.2.8) and each neutron star’s gravitational

wave strain amplitude using Eq. (2.2.9). We used the simulated population to assess

the detectability of and set bounds on the ✏–B parameter space of the Galactic neutron

star population. Our results are summarized in Figure 5. Assuming that the Galactic

neutron star population consists of Ngal ⇠ 109 stars, and assuming aLIGO does not make

a neutron star detection, the contour log10 n = �9 in Figure 5 separates the allowed ✏–B

parameter space (below the contour) from the disallowed ✏–B parameter space (above the

contour). In other words, assuming we know the magnetic field strength of the neutron

star population, we can place upper bounds on the population’s ellipticity; or, assuming

we know the ellipticity of the neutron star population, we can place lower bounds on the

population’s magnetic field strength.

In this chapter, we have only considered the simple (and unrealistic) case in which

all neutron stars have the same magnetic field strength and ellipticity. However, we have

demonstrated that both a gravitational wave detection or the lack of a gravitational wave

detection can be used to constrain some of the properties of the Galactic neutron star

population. To make confident quantitative statements regarding the properties of the

Galactic neutron star population, we must construct a more realistic population. Moving

forward, we plan to incorporate magnetic field and ellipticity distributions and evolutions

into our analysis to more closely mimic the Galactic neutron star population [19; 28; 29].
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Chapter 3

Developing a compact binary

coalescence search for

intermediate-mass black-hole

binaries

3.1 Motivating a CBC search for intermediate-mass black-hole

binaries

In this section, we discuss (i) what an intermediate-mass black hole (IMBH) is, current

observational evidence for their existence, and how one might form, (ii) how IMBHs

might end up in a binary system that coalesces in less than a Hubble time and current

rate estimates for their coalescence within aLIGO’s reach, and (iii) why we are developing

a CBC search for these systems when we have only used burst searches in the past.

3.1.1 Intermediate-mass black holes

Roughly speaking, we define an IMBH to be a BH with a mass above the upper edge

of the stellar-mass BH mass range, which is a few tens of solar masses, and below the

lower edge of the supermassive BH mass range, which is roughly a hundred thousand

solar masses.
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tence can be inferred through observations of quasars, which are luminous active galactic

nuclei whose electromagnetic emission is likely produced by accretion onto supermassive

BHs. Additionally, the motion of stars around the center of our Galaxy is consistent with

orbital motion about a supermassive BH with a mass of ⇠106 M� [30].

Stellar-mass BHs, which are thought to be the remnants of the gravitational collapse of

massive stars, also have strong observational support. Bright X-ray sources in our Galaxy

are thought to be the product of stellar-mass BHs accreting matter from a companion

star. The mass of the X-ray-emitting compact objects can be estimated through radial

velocity measurements of their companions. The compact objects can be conclusively

determined to be BHs if their masses are > 3 M�, which is too massive to be a NS, and

many such sources have been observed [31].

While there is strong evidence for the existence of stellar-mass BHs and supermas-

sive BHs, observational evidence for the existence of IMBHs is still inconclusive. Ultra-

luminous X-ray sources such as discussed in Ref. [32] might be driven by accretion onto

IMBHs. However, accretion onto stellar-mass BHs cannot be ruled out because beaming

models powered by accretion onto a stellar-mass BH with a jet can also produce ultra-

luminous X-rays [33; 34]. More recently there is increasing evidence that there exists an

IMBH in the galaxy M82. By extrapolating the stellar-mass-BH scaling of quasi-periodic

oscillations in the X-ray emission with BH mass to IMBHs, Ref. [35] finds the mass of the

ultra-luminous X-ray source in M82 to be ⇠400 M�. However, not enough is currently

known about IMBHs to ensure that this extrapolation is valid. Perhaps the most com-

pelling suggestion for IMBHs is the existence of stellar-mass BHs and supermassive BHs.

It seems natural that merging stellar-mass BHs could result in an IMBH, and likewise

merging IMBHs could result in supermassive BHs.

If IMBHs exist, they likely form in one or more of the following ways.

1. Formation through stellar collapse: Hypothetical Population III stars are

early-universe stars with negligible metallicity. These stars could have been massive

enough to leave behind IMBHs after their death. However, it has been suggested
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plode in a pair-instability supernova. In this process, the star’s core becomes hot

enough to produce electron-positron pairs. This results in energy and pressure loss,

which leads to a partial collapse followed by accelerated oxygen burning. The star

then explodes leaving behind no remnant. However, for stars in excess of roughly

260 M�, pair-instability will not occur, and the likely outcome of a core collapse

is an IMBH. Population III stars are not the only candidates for stellar collapse

into IMBHs. Recently, several stars with masses greater than 150 M� and initial

masses as high as ⇠300 M� have been observed in the R136 region of the Large

Magellanic Cloud [36]. This discovery demonstrates that there are conditions in

which very massive stars can be sustained. High-metallicity stars can have stellar

winds capable of removing half or more of their mass. So, if some of these types of

stars have low metallicity and mild stellar winds, they could collapse into IMBHs

[37].

2. Formation in globular clusters: A globular cluster is a collection of tightly-

bound stars orbiting a galactic core. Because globular clusters are old, the most

massive stars will have had enough time to collapse leaving behind dense and mas-

sive stellar remnants, such as NSs and BHs. These objects will tend to sink to the

center of the cluster and interact with one another. The close proximity of these

massive objects in globular clusters could result in enough encounters to grow a BH

through mergers with or accretion from stars or stellar remnants [2].

3. Formation in young stellar clusters: Young stellar clusters might also cultivate

IMBHs. The most massive stars in a young cluster will still be on the main sequence

and will also sink toward the center in a cluster core collapse. The close proximity of

stars with such large cross sections (relative to stellar remnants) will lead to many

collisions. The most massive stars will collide first, growing in size and becoming

even more susceptible to future collisions. Enough collisions will result in a very

massive star that can form an IMBH through gravitational collapse, as described

in the first formation mechanism [2].
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Assuming the existence of IMBHs as described in Sec. 3.1.1, we will now discuss possible

mechanism for their formation in binaries. Here, we consider mechanisms resulting in

binary coalescence times less than a Hubble time, which allows them to be aLIGO sources.

1. Common envelope phase: Two orbiting IMBHs produced by very massive stars

with separations greater than tens of solar radii will not merge in a Hubble time.

Assuming no interactions with other stars, a common envelope phase is required

to instigate mergers over a shorter timescale. When one of the stars leaves the

main sequence, its envelope can expand and fully engulf the binary system. As the

companion is dragged through the envelope, the binary will tighten and the envelope

can become unbound. The result is a tightened binary including an IMBH. This

process can even occur twice, which results in an even tighter binary with two

IMBHs.

2. Binary single interactions: The coalescence of two orbiting IMBHs produced by

very massive stars with separations greater than tens of solar radii in less than a

Hubble time can also be accomplished dynamically. One such mechanism is through

single interactions. Essentially, nearby passing stars or other compact objects can

increase the binary’s eccentricity causing the coalescence time to decrease. Through

many single interactions, a wide binary can be brought to merge within a Hubble

time.

3. Triple systems: Similarly, a triple system involving an IMBHB and a tertiary ob-

ject can dynamically shrink the coalescence time of the binary. Through the Kozai

mechanism, the tertiary’s inclination will oscillate with the binary’s eccentricity

through many orbits. These Kozai cycles can cause a wide binary to merge on a

much shorter timescale.

Ref. [37] estimated the IMBHB merger rate for aLIGO with these mechanisms in

mind. Using population synthesis, it was shown that IMBHB mergers supported by a

1This subsection closely follows explanations in Ref. [37]
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600 per year in aLIGO once design sensitivity is achieved. The optimistic rate of 300–

600 events per year ignores the possibility of pair-instability supernovae for Population

I stars, while the pessimistic rate of zero events per year assumes that stars do not

survive the common envelope phase. It is considered most realistic to assume that stars

can survive the common envelope phase but allow for pair-instability supernovae. This

results in a rate of 3–6 events per year. It was also shown via order-of-magnitude estimates

that non-expanding, wide binaries coalescing due to single interactions and/or the Kozai

mechanism result in a rate of roughly 100 IMBHB mergers per year.

3.1.3 Why develop a CBC search for IMBHBs?

Little is known about IMBHs, and GW observations can provide the first definitive proof

of their existence. IMBHB detections could support the current supermassive BH for-

mation models which designate IMBHs as seeds for these giants, shed light on globular

cluster dynamics, test GR in the strong-field regime, and constrain the pair-instability

supernova mechanism. IMBHBs also enable aLIGO to probe cosmological redshifts up

to z ⇠ 2.

Burst searches have been run on LIGO data in the past [38; 39]. A burst search is an

un-modeled search for bursts of energy in the data that are not statistically consistent

with noise. Since IMBHB signals merge near the low-frequency edge of the LIGO sensitive

band, only the last few orbits of a massive IMBHB signal stands out above the noise and

therefore closely resembles a short burst of gravitational energy. Fig. 8 shows the S6 ASD

as well as the characteristic amplitude h
c

=
p

f · |h̃(f)| of a m1 = m2 = 150 M� IMBHB

at a distance D ⇠ 800 Mpc.

Advanced detectors will have vastly improved low-frequency sensitivity over their

predecessors. Fig. 8 also shows a Recolored ASD, which represents aLIGO’s anticipated

ASD through the first few years of operation before reaching design sensitivity. Even still,

the waveform spends much more of its evolution in aLIGO’s sensitive band. Therefore,

a matched filter search using CBC waveforms as filters can be e↵ectively implemented to

search for IMBHBs in aLIGO data.
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Figure 8 : ASDs for data from S6 and S6 data recolored to an anticipated early aLIGO ASD. Also
plotted is the characteristic amplitude hc =

p
f · |h̃(f)| for an IMBHB with 150 M� component masses

at a distance of D ⇠ 800 Mpc.

3.2 CBC search strategy using gstlal

IMBHBs are CBC systems and can therefore be modeled by the waveforms described

in Sec. 1.2.2. Since we have a model for these events, we can perform a matched filter

search for IMBHB signals, and we use the o✏ine gstlal_inspiral software to perform

this search. We outline the search procedure in this section. We start with a general

overview of the search, which describes how the search works in layman’s terms, and

subsequently explain each phase in more detail.

3.2.1 General overview

There are several techniques for searching for GW signals in noisy instrument data.

Knowledge of what the signal looks like (i.e. knowing the shape of the signal) allows

us to employ the optimal way to find hidden signals. We use theoretical CBC waveform

models to find real GW signals from CBC events hidden in noisy instrument data by

trying to match patterns in the data with the shape of the model, or template.

As outlined in Sec. 1.2.2, the CBC waveform is referred to as a chirp because
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merges and quickly rings down. Since all CBC chirp waveforms follow this same general

time/frequency evolution, we have an idea of what GWs from CBC events will look like in

our data. However, our model depends on many source parameters of the system, which

include things like the binary’s component masses and sky location. The values of the

system’s source parameters influence certain aspects of the waveform, such as its phase

and/or amplitude evolution. For instance, keeping all other parameters the same, a CBC

chirp waveform with component masses m1 = m2 = 50 M� is a much di↵erent looking

signal than one with m1 = m2 = 150 M�, as illustrated in Fig. 11. While they both

have roughly the same properties in that they share common chirp waveform features,

the lower mass binary evolves much slower and merges at a much higher frequency than

the higher mass binary. In fact, these waveforms are the same under a rescaling of the

time variable t! 3t. So, although all chirp waveforms share some similarities, the shape

of the signal depends significantly on source parameters that are a priori unknown. This

means that we have many di↵erent signal shapes to search for in our data in order to

cover our entire search parameter space.

The way in which we search for signals with varying source parameters is by con-

structing a bank of waveform templates that each have di↵erent source parameters, and

thus each have a slightly di↵erent shape. The bank is a representation of the entire search

parameter space sampled in such a way that a real GW will be close enough in shape to

the nearest template that it will still be found by searching the data for each template in

our bank.

The most basic CBC models, which assume that the components are non-spinning,

have nine source parameters to search over. Of these nine source parameters, seven

are extrinsic parameters, meaning that they are observer dependent, and only two are

intrinsic, meaning that they are source dependent. All but two of the extrinsic parameters

a↵ect only the amplitude of the signal and do not have to be searched over at all (at least

for the dominant component of the signal), and clever tricks can be used to maximize

over the other two extrinsic parameters. A more detailed explanation of these points

is discussed below. Therefore, the template bank need only be laid out over intrinsic
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The way one might imagine searching for signals with known shapes hidden in noisy

data is to filter the data through each waveform template and compare the shape of your

templates to the shape of the data. If the data only contains noise, there would be no

overall pattern in the data that matches the shape of any of your templates. However, if a

CBC signal is present in the data, the pattern it makes in the data will match at least one

of your templates. Instead of doing this comparison by eye, which would only be successful

for unrealistically large signals, we use a statistic called a matched filter to determine how

closely the data matches our waveform templates. Roughly speaking, the matched filter

is a measure of the correlation of the data with the signal model. It is typical to set

a threshold on the matched filter or some matched-filter-like quantity. Anything above

this threshold is called a “trigger” and might be a real GW signal. The matched filter

is the optimal detection statistic if the statistical properties of the instrument’s noise do

not change over time (i.e. the instrument noise is stationary) and the noise is normally

distributed (i.e. the instrument noise is Gaussian).

However, the noise in the LIGO and Virgo detectors is neither stationary nor Gaussian.

It is not stationary because environmental factors, such as rush hour tra�c, can cause

the instrument’s noise properties to change over time. The noise is roughly stationary,

though, over time scales of a GW signal, and the statistical properties of the noise can

be recomputed over time scales larger than that of a GW signal but smaller than that

of the time-evolution of the noise. The noise is not entirely Gaussian either because it

contains transient spikes, which we call “glitches”. Because glitches can be large relative

to signals (they are sometimes visible by eye, whereas a real signal most likely will not

be), even though glitches do not match the shape of a template, they can still result in

large values for the matched filter, since the statistic is derived assuming Gaussian noise.

Therefore, the matched filter statistic alone is not enough to claim a GW detection.

Glitches are assumed to be uncorrelated across detectors, meaning that a glitch in

H1 will be independent of what is happening in L1. However, if a GW hits H1, then L1

will also contain a GW signal at some nearby time. Therefore, a powerful veto for ruling

out triggers produced by glitches is to check for triggers in at least one other detector
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counterpart at a nearby time in another detector, it is assumed to have been caused by

a glitch and is not considered a GW candidate. Not only does a trigger in one detector

have to have a counterpart in another detector that occurs at roughly the same time, it

must also have been found with the same template. For instance, it might happen that

a trigger-producing glitch occurs in H1 at the same time that a trigger-producing glitch

occurs in L1. Since the glitches are uncorrelated, they may have very di↵erent shapes and

result in large matched filter values for very di↵erent looking templates in each detector.

These triggers are assumed to be caused by glitches since they were found with di↵erent

templates. Therefore, triggers must be coincident in time and template in order to be

considered a GW candidate.

Unfortunately, trigger-producing glitches happen often enough in our detectors that

they even pass our coincidence vetoes, and we therefore need an additional detection

statistic designed to suppress their significance. The detection statistic that is e↵ective

at down-weighting glitches is the �2 statistic. Just as the matched filter statistic can be

roughly thought of as a correlation of the data with the signal model, the �2 statistic can

be roughly thought of as a measure of how consistent the residual of the data and the

signal model is with noise. Real signals will have small values for the �2 statistic while

glitches result in much larger values for the �2 statistic.

Equipped with two detection statistics and two coincidence vetoes, triggers are ranked

by the likelihood ratio, which is a function of our two detection statistics. The numerator

of the likelihood ratio is the probability that a coincident trigger is a real GW signal and

is a distribution that can be analytically derived; the denominator is the probability that

the trigger was produced by noise and is constructed using the rejected noise triggers,

i.e. those found in one instrument with no counterpart in the other. The likelihood ratio

is used to rank all our GW candidates. It is also used to calculate a coincident trigger’s

false-alarm probability and false-alarm rate. The false-alarm rate is the typical quantity

used to demonstrate our confidence that a given GW candidate is a detection.

This was a very general overview of our CBC search strategy. In the following sub-

sections, we provide more detail into how each step is accomplished.
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If a GW from a CBC event, such as an IMBHB, hits a GW detector, such as LIGO or

Virgo, then the data d(t) will consist of both a true GW signal hGW(t; ~✓GW) with source

parameters ~✓GW and instrument noise n(t):

d(t) = hGW(t; ~✓GW) + n(t). (3.2.1)

However, if no GWs hit the detector, then the data will consist only of noise: d(t) = n(t).

Assuming that the noise n(t) is stationary and Gaussian, then the optimal detection

statistic is called the matched filter and is defined as

x(~✓) = (d(t), hGW(t; ~✓GW)), (3.2.2)

where we have also defined a noise-weighted inner product of two time series a(t) and

b(t) as follows:

(a(t), b(t)) = 4Re

Z 1

0

ã(f)b̃⇤(f)

S
n

(f)
df. (3.2.3)

Here, tildes represent Fourier transforms, and S
n

is the one-sided PSD of detector n. No-

tice that the matched filter assumes that we know the exact gravitational waveform with

its exact source parameters. If only nature were so kind. . . Instead, we have theoretical

models for the CBC waveform, which we call templates, and these models depend on

many intrinsic and extrinsic parameters. In order to perform a matched filter search for

GWs hidden in our data, we must find a way to search over each of these parameters.

Searching over extrinsic parameters: Be clever

Eq. (1.2.21) in Sec. 1.2.2 for the CBC waveform in the time domain can be written very

generally as:

hT(t; ~✓) =

 
A(t� t0; ~✓in)

De↵(~✓ex, t)

!
cos
h
2�0 + 2�(t� t0; ~✓in)

i
, (3.2.4)

where the T subscript labels h as a waveform template. Here, we have separated the

waveform parameters ~✓ into intrinsic parameters ~✓in and extrinsic parameters ~✓ex. Addi-

tionally, we have separated the arrival time t0 and phase �0, which are arbitrary constants

2The entirety of this subsection closely follows Refs. [40] and [9].
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the arrival time t0 with the dependent time parameter t, since they always appear in

combination. Therefore, the waveform parameters are ~✓ = {~✓in, ~✓ex,�0}.

Since the extrinsic parameters ~✓ex only enter into the amplitude of the waveform, they

merely set a scale factor for the matched filter search. This assumes that the extrinsic

parameters do not change over the signal duration, which is true for short-duration non-

spinning and aligned-spin systems. We can therefore just normalize the matched filter,

which makes it unnecessary to search over the extrinsic parameters ~✓ex. By convention,

we also choose to set De↵ = 1 Mpc.

The arrival time, however, is an important parameter to search over since it determines

where in the data the signal is located. One could imagine sliding a waveform template

along the data and calculating the matched filter at every point in time. This is equivalent

to doing the following:

x(t0; ~✓in) = (d(t), hT(t� t0; ~✓in)) (3.2.5)

= 4Re

Z 1

0

d̃(f)h̃⇤T(f ; ~✓in)

S
n

(f)
exp(2⇡ift0)df, (3.2.6)

where x(t0; ~✓in) is the matched filter time series for the waveform template hT with in-

trinsic parameters ~✓in, since we do not need to search over the extrinsic parameters ~✓ex.

The second line follows from the first because the Fourier transform of hT(t � t0; ~✓in) is

h̃T(f ; ~✓in) exp(�2⇡ift0). Ignoring the unknown phase �0 which will be addressed shortly,

if the waveform template is close in form to the true GW signal, then the largest matched

filter value will correspond to the matched filter maximized over arrival time.

The phase �0 is also an unknown parameter that must be searched over. This is done

by constructing a linear combination of matched filter outputs where each corresponds

to the waveform evaluated at orthogonal phases. Then, the matched filter maximized

over phase is just the quadrature sum of the two matched filter outputs. An e�cient

way of constructing these orthogonal-in-phase matched filter outputs is by computing

the complex matched filter time series

z(t0; ~✓in) = x(t0; ~✓in) + iy(t0; ~✓in) = 4

Z 1

0

d̃(f)h̃⇤T(f ; ~✓in)

S
n

(f)
exp(2⇡ift0)df. (3.2.7)
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uated at 2�0, and y(t0; ~✓in) is the matched filter time series for the template evaluated at

2�0 ! 2�0� ⇡/2, since for f > 0: h̃T(f ; ~✓in)|2�0�⇡/2 = h̃T(f ; ~✓in)|2�0e
i⇡/2 = ih̃T(f ; ~✓in)|2�0 .

The matched filter maximized over phase is just

|z(t0; ~✓in)| =
q

x2(t0; ~✓in) + y2(t0; ~✓in). (3.2.8)

Finally, as mentioned above, we choose to normalize the matched filter output to

eliminate any amplitude dependence in the template waveforms. We call the normalized

amplitude of the complex matched filter time series the signal-to-noise ratio (SNR) time

series:

SNR(t0; ~✓in) =
|z(t0; ~✓in)|
�(~✓in)

, (3.2.9)

where the normalization constant is

�(~✓in) =
q

(hT(t� t0; ~✓in), hT(t� t0; ~✓in)). (3.2.10)

The value of �(~✓in) is a measure of a detector’s sensitivity and does not depend on t0

since the two time series are the same and thus share the same arrival time. The SNR

maximized over time and phase for a given template, which we call the SNR for simplicity,

is the largest value of the SNR time series.

This is how we search over extrinsic parameters. Next, we address searching over

intrinsic parameters.

Searching over intrinsic parameters: Construct a template bank

The final parameters to search over are the intrinsic parameters ~✓in. To do so, we generate

a bank of waveform templates with specific intrinsic parameters discretely sampled over

the entire parameter space of a given search. The intrinsic parameter space must be

sampled finely enough that the true waveform is close enough to the nearest template to

produce a large enough SNR for detection. This is done by choosing a minimal match

(MM) and placing templates in such a way that any possible GW signal is guaranteed to

have a mismatch less than 100(1�MM)% with at least one template in the bank [41]. If

a template bank does not meet this minimal match criterion for all possible waveforms
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to have “holes”.

To search over the intrinsic waveform parameters, an SNR time series is calculated

for each template in the bank. It is convenient to absorb the constant �(~✓in) into the

template bank by normalizing the templates as follows: hT,n = hT/� = hT/
p

(hT, hT).

The SNR time series is then

SNR(t0; ~✓in) = |z(t0; ~✓in)|, (3.2.11)

where the complex matched filter time series is written in terms of normalized templates:

z(t0; ~✓in) = 4

Z 1

0

d̃(f)h̃⇤T,n(f ; ~✓in)

S
n

(f)
exp(2⇡ift0)df. (3.2.12)

Any time the SNR time series of Eq. (3.2.11) surpasses a pre-determined SNR threshold

for a given template, local peak-finding is applied over time to find the largest value of

the SNR time series, and the corresponding SNR, arrival time, and template parameters

are stored as a single-detector trigger (augmented with �2
auto as described in Sec. 3.2.4).

3.2.3 SNR calculation in gstlal

The previous subsection described the traditional method for calculating SNR, which

involves Fourier transforms to maximize over time. Since gstlal_inspiral was devel-

oped as a low-latency trigger generator, it calculates the SNR time series in the TD to

avoid the unavoidable latency accumulated by performing this operation in the FD. The

normalized matched filter time series is computed in the time-domain as follows:

x(t0; ~✓in) = 4

Z 0

�tdur

dw(t + t0)hT,w,n(t; ~✓in)dt, (3.2.13)

where dw(t) is the whitened data stream, which is the inverse Fourier transform

of d̃(f)/
p

S
n

(f), and hT,w,n(t; ~✓in) = hT,w(t; ~✓in)/
p

(hT,w, hT,w) is the normalized

whitened waveform template, where hT,w(t; ~✓in) is the inverse Fourier transform of

h̃T(f ; ~✓in)/
p

S
n

(f) [42]. Since the template has some finite duration tdur, the integral

is just performed over the duration of the template. To maximize over phase, the

matched filter time series y(t0; ~✓in) for the orthogonal-in-phase template evaluated at
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filter outputs is the SNR time series maximized over phase. Local peak finding is then

used to maximize over time.

Despite the slightly di↵erent strategy, calculating the SNR (maximized over time and

phase) in the TD is equivalent to calculating this quantity in the FD. However, TD filter-

ing is less computationally e�cient than using a fast Fourier transform for FD filtering.

To make TD filtering more computationally competitive, gstlal_inspiral time-slices

and down-samples its templates and then performs a singular-value decomposition (SVD)

on the template bank to drastically reduce the number of templates required for filtering.

Since these operations are not essential to understanding the development of the CBC

search for IMBHBs, we will not delve into more detail. Instead, we refer the interested

reader to Ref. [42].

3.2.4 Autocorrelation �2

Sec. 3.2.2 introduced the SNR as the optimal detection statistic for stationary, Gaussian

noise. However, the noise in the LIGO and Virgo instruments is neither stationary nor

Gaussian. Environmental factors, such as rush hour tra�c, cause the instrument’s noise

properties to change over time. The noise is roughly stationary, though, over typical

time scales of a GW signal. The noise PSD can therefore be frequently recomputed over

time scales larger than that of a GW signal but smaller than that of the time-evolution

of the noise. However, transient noise excitations called “glitches” are non-Gaussian

noise features that can cause the SNR detection statistic to fail. For this reason, the �2

statistic, which is e↵ective at assigning glitches low significance, is a detection statistic

calculated in addition to the SNR. There are many di↵erent types of �2 statistics, and

gstlal_inspiral typically uses the autocorrelation �2 statistic, or autochisq for short.

The autochisq statistic is found by integrating the square of the di↵erence between the

SNR time series centered around a GW trigger and the scaled autocorrelation function

(ACF) of the associated template. A template’s ACF is essentially calculated by finding

the SNR time series of the template filtered over itself:

ACF(t0; ~✓in) =

����4
Z 1

0

h̃T,w,n(f ; ~✓in)h̃
⇤
T,w,n(f ; ~✓in) exp(2⇡ift0)df

���� . (3.2.14)
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t0 = 0, is 1. In order to compare the ACF to the SNR time series, it must be scaled to

the same amplitude, and the maximum value of the SNR time series must be shifted to

t0 = 0. The autochisq statistic can then be written in the following way:

�2
auto =

Z
T/2

�T/2

���SNR(t0; ~✓in)� SNR0 · ACF(t0; ~✓in)
���
2

dt0, (3.2.15)

where SNR0 = SNR(0; ~✓in) is the maximum value of the SNR time series and T is a tunable

amount of time over which to calculate �2
auto. In practice, it is the autocorrelation length

(ACL) that is the tunable parameter which specifies the number of samples to include

in the integral, and T = ACL · �t where �t = 1/(sample rate). The value of �2
auto

will be small for signals that are triggered by closely-matching templates, which should

happen for real GW signals, and large for signals triggered by templates with dissimilar

properties, which should happen for glitches [43].

Fig. 9 demonstrates how the SNR maximized over phase and time and the autochisq

statistics can be used to distinguish noise events from real signals. Plotted by red and

black crosses are all the coincident triggers recorded in a gstlal_inspiral search run

over two months of simulated data. The red crosses labeled “Injections” are candidates

that are associated with simulated GW signals manually injected into the data. The black

crosses labeled “background” are candidates that are not associated with injected signals

and are surely noise events since the search used simulated data. If the �2
auto axis were

projected onto the SNR axis, which would be the case if SNR were the only detection

statistic used, then the injections would not be distinguishable from the background

events. The inclusion of the autochisq statistic, however, results in a clear separation

between injection and background events. Another thing to notice is that the value of

�2
auto increases with SNR. This is apparent in Eq. (3.2.15) since the di↵erence between

each point in the SNR and ACF time series will increase with the maximum SNR.

3.2.5 Ranking GW candidates3

The ultimate goal of a GW search is to find GW candidate signals and make statistically

significant claims regarding how likely they are to be real GW detections. The statistic

3The entirety of this subsection closely follows Ref. [44].
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Figure 9 : �2
auto vs. SNR in H1. Values associated with injections are marked in red and values associated

with noise events, which are often referred to as “background” events, are marked in black.

that is often associated with the significance of a GW signal from a CBC search is the

false-alarm rate (FAR), which is a measure of how often noise will result in a signal with

identical properties. In this section we outline how to go from trigger generation all the

way through FAR calculations.

Coincidence

In Sec. 3.2.2, we present SNR as the optimal detection statistic in stationary Gaussian

noise. While the LIGO–Virgo detector noise is neither stationary nor Gaussian, the SNR

statistic is still useful for finding and ranking GW candidates. In a gstlal_inspiral

search, as the data is filtered through each template in the bank, whenever the SNR

time series exceeds a pre-determined SNR threshold, which we choose to be SNR
⌧

= 4,

local peak-finding is applied over time to find the largest value of the SNR time series.

The corresponding SNR, arrival time, and template parameters are grouped together as

a single-detector trigger. As each trigger gets generated, the autochisq statistic also gets

calculated and grouped with the rest of the trigger information.

When single-detector triggers are coincidence in time and template across at least two

detectors, they are stored as GW detection candidates. Coincident in time means that
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window accounts for the small but finite amount of time it takes for a GW traveling at

the speed of light to hit one instrument and then another. Coincident in template means

that the single-detector triggers are also found with the same template across detectors.

When single-detector triggers are not coincidence in time and template across at least

two detectors, they are assumed to be noise events.

From here on out, when we use the word “coincidence” in reference to triggers, it is

implied that we mean “coincident in time and template”, unless otherwise stated.

Likelihood ratio

The SNR and autochisq statistics are used to rank GW candidates through the likelihood

ratio

⇤ =
P (SNR1,�2

auto,1, . . . , SNR
n

,�2
auto,n

, ~✓in|s)
P (SNR1,�2

auto,1, . . . , SNR
n

,�2
auto,n

, ~✓in|n)
, (3.2.16)

which is the probability of observing a certain combination of detections statistics given

that the candidate is a true signal “s” over the same probability give that the candidate

is the result of noise “n”. It is assumed that the likelihood ratio can be separated into

the product of likelihood ratios from individual detectors:

⇤ =
detY

n

⇤
n

=
detY

n

P (SNR
n

,�2
auto,n

, ~✓in|s)
P (SNR

n

,�2
auto,n

, ~✓in|n)
. (3.2.17)

The numerator of ⇤
n

is evaluated assuming that signals are found during periods of

time where the data is relatively stationary and Gaussian. Therefore, the probability of

observing certain SNR values can be determined by assuming signal sources are uniformly

distributed in space and the probability of observing certain �2
auto is demonstrated in

Ref. [45]. This numerator therefore is neither detector dependent nor template dependent.

The denominator of ⇤
n

is constructed by filling a histogram with the SNR and autochisq

values from the non-coincident single-detector triggers. Fig. 10 plots examples of the raw

histograms for the numerator and denominator of the likelihood ratio in Gaussian noise

and recolored enhanced LIGO data for a 1-day analysis.

Once constructed, the likelihood ratio ⇤ is used to rank all candidate signals against

each other. The higher the likelihood ratio, the more likely a candidate signal is a real
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candidate, we calculate its false-alarm probability and false-alarm rate from its likelihood

ratio.

False-alarm probability and false-alarm rate

The false alarm probability (FAP) for a candidate with likelihood ratio ⇤0 is the prob-

ability the a noise event has a likelihood ratio greater than or equal to ⇤0. Basically,

the FAP is the probability that a noise event is at least as likely as the candidate. The

FAP is found from the probability of observing a certain likelihood ratio ⇤0 given that

the candidate is a noise event, or P (⇤0|n). This can be found by first integrating the

denominator of the likelihood ratio over surfaces of constant likelihood ratio

P (⇤0, ~✓in|n) =

Z

⌃(⇤0)

P (SNR1,�
2
auto,1, . . . , SNR

n

,�2
auto,n

, ~✓in|n)dn�1⌃ (3.2.18)

to find the probability of observing a certain likelihood ratio ⇤0 with a template defined

by the intrinsic parameters ~✓in (see Ref. [44] for details on how this is done), and then

marginalizing over the template bank:

P (⇤0|n) =

Z
P (⇤0, ~✓in|n)d~✓in. (3.2.19)

Integrating from ⇤ to infinity

P (⇤0 � ⇤|n) =

Z 1

⇤

P (⇤0|n)d⇤0 (3.2.20)

gives the probability that a noise event would be assigned a likelihood ratio at least as

large as ⇤. This is the FAP if a GW search produced just a single coincident trigger.

However a GW search will produce many GW candidates. The probability of observing

one or more events with a likelihood ratio at least as large as ⇤ when the search produced

m candidates is

FAP(⇤) = P (⇤0 � ⇤|n1, . . . , nm

) = 1� (1� P (⇤0 � ⇤|n))m. (3.2.21)

Notice that the FAP never used any signal information. The FAP is thus independent of

whether or not the search detects any real signals.



www.manaraa.com

53The FAP can be used to calculate the FAR of a candidate signal. It is assumed that

the probability of observing one or more noise events with a likelihood of at least ⇤ is a

Poisson distribution, which takes the form

FAP(⇤) = 1� e��, (3.2.22)

where � is the mean number of events. Therefore, if the T is the observational time, the

FAR is

FAR(⇤) =
�(⇤)

T
= � ln[1� FAP(⇤)]

T
. (3.2.23)

By combining Eqs. (3.2.23), (3.2.21), and (3.2.20), the FAR can be equivalently expressed

as

FAR(⇤) = �
m ln[

R ⇤

0
P (⇤0|n)d⇤]

T
. (3.2.24)

In this way, every GW candidate produced during the filtering process gets ranked

by the likelihood ratio of Eq. (3.2.17), and assigned a FAP from Eq. (3.2.21) and a FAR

from Eq. (3.2.24).

3.3 Developing a CBC search for IMBHBs

The gstlal_inspiral software was originally developed to search for BNSs in low-

latency. It has since been expanded to a broader parameter space that includes NSBHs

and stellar-mass BBHs [46]. My collaborators and I are working to extend the search

parameter space even more to include massive binaries involving IMBHs. This section

outlines what has been learned in extending gstlal_inspiral to search over the IMBHB

parameter space and presents results from a recent mock data challenge (MDC).

3.3.1 MDC1

MDCs are a primary tool in the LSC for testing the sensitivity of a GW search. It is

typically the first testing ground for tuning and optimizing a GW search in preparation

for searching for real signals in real GW data. In an MDC, synthetically produced data

(or sometimes archival data) is injected with simulated GW signals (called “injections”)

to test a given search’s sensitivity for finding these injections and ranking them as real
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is designed to mimic the types of astrophysical signals being searched for, though they

are usually injected at a much higher rate than anticipated. For a CBC search, the MDC

tests how well a template bank recovers the injection set and is a testing ground for

adjusting any tunable parameters to improve the search sensitivity.

We have finished the first IMBHB MDC and are working through a second. Each

MDC is designed to test di↵erent aspects of the IMBHB search. Since this is the first

CBC search for sources up to a total mass of ⇠ 300 M�, MDC1 was designed to merely

be an end-to-end test of how e↵ective a CBC search could be at detecting such high

mass signals. We therefore kept the MDC1 configuration to be as simple and idealized

as possible.

MDC1 configuration

In Fig. 13, we show the amplitude spectral density (ASD), which is just the square root

of the PSD, of the MDC1 data set. It was generated by whitening enhanced LIGO

data from the sixth science run and recoloring it to the anticipated ASD for the early

years of Advanced LIGO. Whitening is the process of removing the overall frequency

dependence of a data set by dividing by its ASD. Recoloring is the process of adding

an overall frequency dependence to the data. The result is glitchy data, much like we

expect Advanced LIGO-data to be, that has the same noise floor as is expected in early

Advanced LIGO. We used roughly two months of recolored data from the three detectors

H1, L1, and V1.

For simplicity, we focussed our MDC1 e↵orts on three distinct source classes: asym-

metric mass ratio binaries uniformly and narrowly distributed about m1 = 50 M� and

m2 = 5 M�, equal mass binaries with moderate component masses uniformly and nar-

rowly distributed about m1 = m2 = 50 M�, and equal mass binaries with large component

masses uniformly and narrowly distributed about m1 = m2 = 150 M� (see Fig. 12). For

simplicity, we refer to each class of signals as the “5:50” , “50:50”, “150:150” injection

set and have plotted one of each in Fig. 11 for reference. The injections were distributed

uniformly in a sphere whose radius corresponds to the distance to an optimally-oriented
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this distance is 240 Mpc for 5:50 injections, 1,140 Mpc for 50:50 injections, and 1,160 Mpc

for 150:150 injections. The simulated signals were injected every 100 seconds to densely

populate the data with non-overlapping signals. Signal orientations were also drawn from

uniform distributions. The waveform approximant used to simulate these sources is EOB-

NRv2, which is like a pN inspiral waveform with a merger and ringdown calibrated to

NR simulations and is part of the LIGO Algorithm Library [47]. This waveform family

does not allow for spinning components. Injections were either generated starting at a

lower frequency flow of 25 Hz or 10 Hz, which is explained more in the next section.

We searched for these injection sets using an EOBNRv2 template bank. The templates

were placed over the intrinsic parameters m1 and m2 to cover the overlapping surface of

3 M�  m2  m1  200 M�, 50 M�  m1 + m2  350 M�, and 1/14  m2/m1  1

with a minimal match of roughly 0.985. Templates were either generated starting at

a lower frequency flow of 25 Hz, resulting in 645 templates, or 20 Hz, resulting in 779

templates, and the reasoning for this is explained more in the next section. Fig. 12 shows

the template bank placement in mass space for templates generated at flow = 20 Hz.

Search sensitivity

To determine how sensitive a search is to an injection population, we treat the injections

as we would any real signal in our data. We filter the data (with injections) through our

template bank and collect a list of GW candidates. Each is ranked with a likelihood,

which eventually gets translated into a FAR. To analyze how sensitive the search is to

our injection sets, we use a threshold in FAR to separate all of our candidates associated

with injections into “missed” or “found” categories. Fig. 15 shows missed/found plots in

decisive De↵ versus Mtotal for each injection set. For injections marked as “found”, the

decisive De↵ is the second largest e↵ective distance calculated for the coincident detectors;

for injections marked as “found”, the decisive De↵ is the second largest e↵ective distance

calculated for the participating detectors. The FAR threshold used to separate “missed”

from “found” in these plots is FAR
⌧

= 1/(30 days), where ⌧ indicates a threshold.

The number of “found” injections and their associated distances compared to the
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roughly how far away the injection set signals can be detected in a real search. To do this,

we first calculate the sensitive volume by performing an e�ciency-weighted integration

over b spherical shells of thickness �d
i

at a distance of d
i

:

Vs(⌧) =
bX

i

4⇡✏
i

(⌧)d2
i

�d
i

, (3.3.1)

where the e�ciency in the ith shell is defined to be

✏
i

(⌧) =
number of “found” injections in ith bin

total number of injections in ith bin
=

Nfound,i

Ntot,i

, (3.3.2)

which is a function of the threshold. Then, the sensitive distance is just

Ds(⌧) =


3V (⌧)

4⇡

�1/3

. (3.3.3)

The uncertainty in the e�ciency due to the finite number of injections in each distance bin,

which is estimated by modeling the e�ciency with a binomial distribution, is propagated

through the sensitive volume and into the sensitive distance like so:

�
Ds =

1

3
Ds
�

Vs

Vs

, (3.3.4)

where

�
Vs =

vuut
bX

i

(4⇡�
✏id

2
i

�d
i

)2 (3.3.5)

and

�
✏i =

s
✏
i

(1� ✏
i

)

Ntot,i

. (3.3.6)

So, the sensitive distances in Fig. 16 are computed through Eq. (3.3.3) with an uncertainty

estimated by Eq. (3.3.4) and are a function of whatever threshold is used to separate

“missed” and “found” triggers associated with the injection sets.

Waveform handling

For the most part, we found that gstlal_inspiral was e↵ective at searching for

IMBHB signals (to skip straight to these results, see Figs. 15 and 16). However, since

gstlal_inspiral was originally developed to search for long BNS signals, it was not too
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were being handled. In particular, methods for conditioning the beginning of the wave-

forms and choices regarding what flow should be used for waveform generation had to be

adjusted for searching over the IMBHB parameter space.

We initially decided that generating waveforms at a lower frequency of flow = 25 Hz

would be low enough that, after whitening the data and the templates as described

in Sec. 3.2.3, the beginning of the waveform would be overtaken by the noise at lower

frequencies. This seemed reasonable considering the ASD at 25 Hz is roughly one order

in magnitude above the noise floor (see Fig. 13). For this reason, we did not even bother

to taper the beginning of our waveforms before injecting them into the data. However,

as shown in Fig. 13, a 150:150 IMBHB injection starting at 25 Hz located ⇠800 Mpc

away abruptly starts above the noise amplitude. Therefore, an unnatural feature was

introduced at the beginning of each high-mass injection after Fourier transforming the

data to whiten it and inverse Fourier transforming the data back into the TD to perform

the SNR calculation. This is a manifestation of the Gibbs phenomenon that is typically

avoided by either tapering the start of injections or injecting at a low enough frequency

that the large noise amplitude makes the discontinuity is insignificant. However, the

templates used in our search were tapered and therefore did not experience this e↵ect.

As a result, the autochisq statistic was negatively a↵ected by the unnatural mismatch

between our templates and injections, and the search sensitivity for high-mass signals was

poor.

Even though the templates we used were tapered, the search sensitivity still su↵ered

from them being generated starting at flow = 25 Hz. Tapering is typically applied over

the first few waveform peaks. However, as shown in Fig. 11, a 150:150 signal starting at

flow = 25 Hz only has a couple large amplitude cycles. Therefore, tapering over the first

few peaks noticeably reduces the SNR recovery of high-mass templates. We demonstrate

this e↵ect in Fig. 14. Notice that templates starting at 25 Hz that get tapered and

subsequently whitened have noticeably less amplitude in their first few peaks than if they

were not tapered.

To account for our original oversights in the waveform handling, we reran the search
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We started our injections at the very low starting frequency of 10 Hz to be sure that

the waveforms started out-of-band. However, there frequency at which we start our

templates a↵ects the number of templates in our template bank. We found that the

search sensitivity was insignificantly a↵ected by pushing the starting frequency of our

templates below 20 Hz. This is because tapering has a minimal e↵ect on the amplitude

of our waveform if we start them at 20 Hz, as shown in the middle plot of Fig. 14.

MDC1 results

In Figs. 15 and 16 we show the results of our search before and after accounting for

waveform handling issues. It is clear that the sensitivity to the 150:150 injections was

hurt the most by the waveform handling issues, the sensitivity to the 50:50 injections was

slightly a↵ected, and the sensitivity to the 5:50 injections felt mostly insignificant e↵ects.

This makes sense in two ways. Firstly, the lower mass signals have lower amplitudes at

near-detection threshold SNRs, and therefore when they are injected to abruptly start

in-band, the resulting Gibbs phenomenon feature will be less noticeable. Secondly, the

lower mass signals are much longer, and therefore tapering out some amplitude in the

first few peaks of the waveform does not have as dramatic of an e↵ect on these signals.

More recently, we have incorporated a function into our waveform generation routines

that, given an flow, generates a waveform starting at a lower frequency and tapers up to

flow. This ensures that our injection and template waveforms will be free of any Gibbs

e↵ects and will not lose any signal power due to tapering.

3.3.2 MDC2

We are currently working through a second MDC. The purpose of MDC2 is to test the

e↵ects of spin and precession in IMBHB sources. Since little is known about IMBHBs

and their formation mechanisms, while we expect these systems to be spinning, it is

unclear whether to expect their component spins to be aligned/anti-aligned or to expect

the systems to be precessing [37]. Additionally, we will be testing the e↵ects of waveform

uncertainty by using di↵erent waveform families for injections and templates.
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injections with aligned spin are roughly comparable to our MDC1 results. A few factors

are at play here. Firstly, all else being equal, the aligned-spin (anti-aligned spin) systems

of MDC2 can be seen to slightly larger (smaller) distances compared to the non-spinning

injections of MDC1 [37; 48; 49]. Secondly, our non-spinning template bank is not expected

to be completely e↵ectual to spinning systems. Therefore our MM condition might not

be conserved, resulting in less sensitivity to these sources. Thirdly, for MDC2, we are

using a more sophisticated likelihood ratio than the one described in Sec. 3.2.5, which

results in increased sensitivity [50].

Preliminary results however show a sharp drop in sensitive distance for the 5:50 injec-

tions for large aligned-spin values. While this feature is still being investigated, sensitive

distance can be restored by using an aligned-spin template bank. Indeed, preliminary

results show that an aligned-spin bank has roughly the same or better sensitivity across

each injection set. However, extending to an aligned-spin bank adds an order of magni-

tude more templates to the bank (from ⇠1,000 to ⇠10,000 templates), resulting in a more

computationally expensive search. The question then becomes “Does the benefit of an

aligned-spin bank outweigh the cost?” Further investigations are underway in an e↵ort

to decide whether or not to perform the IMBHB search with an aligned-spin template

bank.

3.4 Conclusion and discussion

A CBC search for IMBHBs may result in the first conclusive proof of the existence

of IMBHs. This would be an extraordinary discovery that would shed light on super-

massive BH formation, globular cluster dynamics, strong-field GR, and much more. A

gstlal_inspiral search for IMBHBs is a relatively inexpensive search, since a non-

spinning bank will only consist of ⇠1,000 templates. In MDC1, we showed that advanced

detectors in early configurations can see IMBHBs out to sensitive distances ranging from

⇠100 Mpc for light binaries to ⇠1,000 Mpc for heavy binaries. However, we have only

demonstrated the search sensitivity to non-spinning systems. We are currently working

through a second MDC that will test the search sensitivity for highly spinning and/or
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We have learned the importance of proper waveform handling for analysis involving

high-mass signals, such as IMBHBs. In particular, we saw that tapering the first few cycles

of a short, high-mass waveform can noticeably decrease its power. Instead, templates and

injections should be generated at lower frequencies than requested and tapered up to such

frequencies to ensure that the signals maintain full power at the intended lower frequency

band. Otherwise an IMBHB search is less sensitive to high-mass signals.

Preliminary results in MDC2 also suggest a transition to an aligned-spin bank. Since

such a transition results in an order of magnitude more templates, more investigations

are being performed to weigh our options going forward.

Eventually, we will have to explore the entire search mass parameter space in a sub-

sequent MDC or as part of an engineering run (ER). An ER is an end-to-end test of data

collection at the instruments through the announcement of GW event candidates. In the

upcoming ER, we could run the IMBHB search on real detector data. Not only is this the

first time we will be able to test our search on aLIGO data, which might have di↵erent

and unexpected characteristics compared to the recolored S6 data that we have used so

far, but this data is also forecasted to have the best sensitivity to date, even eclipsing the

mark set by S6.
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Figure 10 : The likelihood ratio ⇤H1, its numerator P (SNRH1, �
2
auto,H1,

~✓in|s), and its denominator
P (SNRH1, �

2
auto,H1,

~✓in|n) are plotted as 2D histograms in raw counts on �2
auto/SNR2 versus SNR axes.

The left plots were generated with Gaussian data, and the right plots were generated with recolored S6
data. The top plots are the numerators of the likelihood ratios, the middle plots are the denominators
of the likelihood ratios, and the bottom plots are the likelihood ratios.
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Figure 11 : Plots of h+ for 5:50 (top), 50:50 (middle), and 150:150 (bottom) systems with EOBNRv2
generation at flow = 25 (purple), 20 (red), and 10 (green).
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Figure 12 : Non-spinning MDC1 template bank. The blue dots mark the template placement in mass
space, and the orange stars mark the narrow mass distributions of the injections used in MDC1.

Figure 13 : ASDs for data from S6 and S6 data recolored to an anticipated early aLIGO ASD. Plotted
is the characteristic amplitude hc =

p
f · |h̃(f)| for an IMBHB with 150 M� component masses at a

distance of D ⇠ 800 Mpc generated starting at 25 Hz.
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Figure 14 : Plotted are whitened 150:150 waveforms generated starting at either 20 or 25 Hz. The top
two plots compare tapered with untapped waveforms, and the bottom plot compares tapered waveforms
with di↵erent minimum frequencies.
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Figure 15 : Missed/Found plots comparing the e↵ects of waveform handling. The dots represent injected
signals. Black dots are missed signals, and colored dots are signals found coincident in a certain combi-
nation of instruments as labeled in the legend. Decisive De↵ refers to the second smallest single-detector
De↵ . The distinction between Missed and Found is made through a FAR threshold of 1/(30 days). (Left)
Results from a search in which we used templates generated starting from 25 Hz and injected untapped
signals generated starting from 25 Hz. (Right) Results from the same search except that we generated
templates starting from 20 Hz and injected tapered signals generated starting from 10 Hz.
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Figure 16 : Sensitive distance plots for MDC1. (Top) Results from a search in which we used templates
generated starting from 25 Hz and injected untapped signals generated starting from 25 Hz. (Bottom)
Results from the same search except that we generated templates starting from 20 Hz and injected
tapered signals generated starting from 10 Hz.
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Chapter 4

Systematic and statistical errors in a

bayesian approach to the estimation

of the neutron-star equation of state

using advanced gravitational-wave

detectors1

4.1 Background and Motivation

Advanced interferometric gravitational-wave (GW) detectors currently under construc-

tion are expected to begin operating in the next few years. Advanced LIGO [52] is

expected to achieve its design sensitivity c. 2019 [8], at which time the detection rate of

binary neutron-star (BNS) events in a single detector is expected to be ⇠40 yr�1, though

this value is quite uncertain and ranges from 0.4–400 yr�1 [53].

When a compact binary coalescence (CBC) signal is detected [54; 55], the correspond-

ing interferometer data stream segment is sent through a parameter estimation pipeline to

determine the source parameters of the system. Some of these source parameters include

the binary component masses and spins, the sky location, distance, and orientation of the

1This chapter was published in Ref. [51]
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source parameters by comparing model waveform templates, whose form depends on these

source parameters, to the data stream segment containing the GW. For this work, we

use lalinference_mcmc, which is included in the LALInference LSC Algorithm Library

[47], as our parameter estimation pipeline. It is a Markov Chain Monte Carlo (MCMC)

sampler designed to e�ciently explore the full waveform parameter space in order to make

reliable and meaningful statements about CBC source parameters [56–58].

This chapter’s focus is on measuring the e↵ect of tidal influence on BNS GW signals

with advanced detectors. Neutron stars (NSs) in merging CBC systems will be tidally

deformed by the gravitational gradient of their companion across their finite diameter.

This e↵ect is insignificant at large separations but becomes increasingly significant as

the NSs near each other [59]. The internal structure of a NS, which is characterized by

its equation of state (EOS), determines how much each star will deform. The amount

that a NS deforms will a↵ect the orbital decay rate, which is encoded in the observed

gravitational waveform. Therefore, if a gravitational signal from a BNS system is detected,

then such a detection could provide insight into the NS EOS [59–62].

In order to make meaningful statements regarding the recoverability of tidal param-

eters from BNS signals, it is important to understand the e↵ects of error on parameter

estimation. One such obstacle to measuring tidal influence is accurate waveform model-

ing. The error resulting from inaccurate waveform models is a kind of systematic error.

Some of the most commonly used CBC waveforms rely on a post-Newtonian (PN) expan-

sion in orbital speed. As the CBC inspirals, the orbital speed of the binary components

increases leading to a higher frequency signal. These waveform families are thus unreli-

able at high frequencies where orbital speeds become large [10] and tidal e↵ects emerge.

Another di�culty in measuring tidal influence results from fluctuations in detector noise.

This type of error is called statistical error. Tidal influences only noticeably a↵ect the

final high frequency orbits of the binary where the detector noise (in strain units) is com-

paratively large. Extracting such a small influence occurring in the high frequency band

is an investigation at the very brink of our detectors’ sensitivity. Even small fluctuations

in detector noise might be able to dramatically a↵ect the recovery of tidal deformability.
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work.

Several studies have used the Fisher Information Matrix (FM), which is only valid in

the large signal-to-noise ratio (SNR) limit, to estimate the measurability of tidal e↵ects

on the CBC gravitational waveform [59–61; 63–66]. Flanagan and Hinderer [59] were

among the first to show that advanced detectors can constrain the tidal influence of NSs

on the early inspiral portion of the CBC waveform. They notably use PN waveforms

truncated at 400 Hz to remove the unreliable high-frequency portion of the PN model.

Hinderer et al. [60] later investigated how well constraints on the tidal deformability from

the early inspiral can discriminate between several theoretical NS EOSs. Also using PN

waveforms, they find that advanced detectors will likely only be able to probe sti↵ EOSs.

Further FM studies moved away from the use of PN waveforms in favor of waveforms

that are more reliable at high frequencies. Read et al. [61; 63] probed the late inspiral

portion of the BNS waveform with numerical relativity (NR) simulations, which are ac-

curate during the late inspiral and merger epochs. They find that the additional high

frequency information results in greater measurement accuracy of the tidal deformabil-

ity. Damour, Nagar, and Villain [65] also probed beyond the early inspiral with tidally

corrected e↵ective-one-body (EOB) waveforms, which they claim to be accurate up to

merger. They show that advanced detectors should in fact be able to constrain the NS

EOS for reasonably loud signals.

While the above mentioned studies are informative, the FM is not always trustworthy

in estimating the measurability of source parameters [67–70]. Though it is known that

FM estimates are only accurate for loud signals, recent investigations have highlighted

additional shortcomings of FM estimates when compared to real GW parameter estima-

tion pipelines [68]. It is now clear that there is no substitute for full Bayesian results

when making definitive statements regarding parameter estimation.

Del Pozzo et al. [71] recently performed Bayesian simulations of BNS systems with a

tidally corrected PN waveform. They find that advanced detectors will be able to measure

tidal e↵ects on GW signals and constrain the NS EOS by combining information from

many BNS sources. While this result is very important, their analysis assumes that true
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this limitation, it is necessary to study how much their result depends on this assumption.

Recently, there have been several FM investigations that have studied the e↵ects of

systematic error on the measurability of tidal parameters [63; 64; 72; 73]. In particular,

Yagi and Yunes in [72] and Favata in [73] both find that current PN waveforms, which

are known only up to 3.5PN order [10], cannot be used to make accurate measurements

of tidal e↵ects. This is an extremely important result that motivates a full Bayesian

investigation into the e↵ect of systematic error from tidally corrected PN waveforms on

parameter estimation.

In this work, we use a full Bayesian framework to demonstrate the ability of advanced

detectors to constrain the NS EOS by measuring the e↵ects of tidal influence on BNS

signals. We estimate the anticipated measurement uncertainty associated with using the

advanced LIGO/Virgo network [52; 74] to recover tidal influence in BNS systems. We find

that systematic error inherent in the current PN inspiral waveform families significantly

biases the recovery of tidal parameters. Additionally, we find that individual instances of

detector noise can on occasion considerably reduce the measurability of tidal parameters.

We consider only BNS systems.

This work is organized as follows. In Sec. 4.2 we review how tidal influences a↵ect

the CBC waveform. In Sec. 4.3 we briefly outline the parameter estimation pipeline used

in this analysis and present measurement uncertainty estimates for the recovery of tidal

influences in BNS systems. In Sec. 4.4 we explain how simultaneous mass-like and radius-

like measurements, specifically the measurement of chirp mass and tidal deformability,

can help constrain the NS EOS. In Sec. 4.5 we describe the two main sources of error

in parameter estimation and how much each source of error a↵ects the recovery of tidal

parameters. We finish with a summary of our main results in Sec. 4.6. We also refer the

interested reader to Appendix 4.A where we derive how the tidal corrections appear in

several PN waveform families.
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In this section, we review the e↵ects of tidal influences on the CBC waveform. For a more

complete discussion, refer to Appendix 4.A, which outlines how tidal e↵ects appear in the

following PN waveform families: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2.

For more details regarding each of these waveform families, see [10] and references therein.

4.2.1 Constructing tidally corrected PN waveforms

To model the CBC waveform, it is customary to approximate each massive body as having

infinitesimal size. As the two bodies orbit, GWs carry energy away from the system

causing their separation to decrease and their orbital frequency to increase. The energy

and luminosity of this point-particle system (Epp and Lpp respectively) are currently

known to 3.5 post-Newtonian (PN) order2 [10].

If the two compact objects are NSs, each will start to deform under the tidal field

of the other as their separation decreases. The deformation of each body will have an

e↵ect on the rate at which the bodies coalesce. BNS systems therefore depart from the

point-particle approximation at high frequencies and require an additional correction to

the energy and luminosity of the system relative to the point-particle terms.

Since a NS in a binary system will deform under the tidal influence of its companion,

its quadrupole moment Q
ij

must be related to the tidal field E
ij

caused by its companion.

For a single NS, to leading order in the quasi-stationary approximation and ignoring

resonance,

Q
ij

= ��E
ij

, (4.2.1)

where � = (2/3)k2R5/G parameterizes the amount that a NS deforms [59]. The i and j

are spatial tensor indices, k2 is the second Love number, and R is the NS’s radius. Since �

parameterizes the severity of a NS’s deformation under a given tidal field, it must depend

on the NS EOS. NSs with large radii will more easily be deformed by the external tidal

field, because there will be a more extreme gravitational gradient over their radius. For

a fixed mass, NSs with large radii are also referred to as having a sti↵ EOS, and, for the

2The energy has recently been calculated to 4PN order [75].
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of � will have large radii, a sti↵ EOS, and become severely deformed in BNS systems; on

the other hand, NSs that have small values of � will have small radii, a soft EOS, and

will be less severely deformed in these systems.

Tidal e↵ects are most important at small separations and therefore at high frequencies

in BNS systems. Tidal corrections to the energy �Etidal and tidal corrections to the lumi-

nosity �Ltidal add linearly to the point-particle energy Epp and luminosity Lpp. Though

the leading order tidal correction is a Newtonian e↵ect, it is often referred to as a 5PN

correction, because it appears at 5PN order relative to the leading order point-particle

term. In this work, we keep the leading order (5PN) and next-to-leading order (6PN)

corrections to the energy and luminosity [76]:

�Etidal = �1

2
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The total mass is M = m1 + m2, where m1 and m2 are the component masses,

⌘ = m1m2/M2 is the symmetric mass ratio, x = (⇡GMfgw/c3)2/3 is the PN expan-

sion parameter, fgw = 2forb is the GW frequency, forb is the binary’s orbital frequency,

and �1 = m1/M and �2 = m2/M are the two mass fractions. Note that the PN order is

labelled by the exponent on x inside the square brackets, which is why these terms are re-

ferred to as 5PN and 6PN corrections. Since the 5PN and 6PN tidal correction coe�cients

multiply x5 and x6 respectively, these e↵ects will be insignificant at low frequencies and in-

creasingly more significant at higher frequencies (x ⇠ f 2/3
orb ), as anticipated. Appendix 4.A

derives each tidally corrected PN waveform family from Eqs. (4.2.2) and (4.2.3).

The point-particle energy and luminosity are only known to 3.5PN order [10]. How-

ever, we add tidal corrections to the energy and luminosity that appear at 5PN and 6PN

orders without knowing the higher order point-particle terms. The justification for in-

cluding the tidal corrections has typically been that they are always associated with the
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A

[c2/(Gm
A

)]5 ⇠ [c2R
A

/(Gm
A

)]5 ⇠ 105 [59]. Therefore, although they

appear at high PN orders, the e↵ect of the tidal terms on the binary’s orbit are com-

parable to the e↵ects of the 3PN and 3.5PN point-particle terms. However, this claim

was contradicted in [72] because the tidal corrections are actually associated with the

coe�cient [c2R/(GM)]5 ⇠ 103 ⌧ [c2R
A

/(Gm
A

)]5, which is apparent from the form of

Eqs. (4.2.2) and (4.2.3). We show in Sec. 4.5.1 that not knowing the higher order PN

point-particle terms leads to significant systematic error when recovering tidal param-

eters. Yagi and Yunes in [72] and Favata in [73] also discuss the importance of these

unknown point-particle terms.

4.2.2 Reparameterization of tidal parameters

It becomes convenient to reparameterize the tidal parameters (�1,�2) in terms of purely

dimensionless parameters, which we call (⇤̃, �⇤̃) [73]. Inspired by the �̃ from [59], ⇤̃ =

32G�̃[c2/(GM)]5 is essentially the entire 5PN tidal correction in all of the PN waveform

families, while the 6PN tidal correction is a linear combination of ⇤̃ and �⇤̃. For example,

the tidal corrections to the TaylorF2 phase later derived in Eq. (4.A.6) of Appendix 4.A

can equivalently be expressed as follows:
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The dimensionless parameters ⇤1 = G�1[c2/(Gm1)]5 and ⇤2 = G�2[c2/(Gm2)]5, and we

have assumed that m1 > m2. Though we choose to express ⇤̃ and �⇤̃ in terms of dimen-

sionless parameters as in Eqs. (4.2.5) and (4.2.6), they can be equivalently expressed more

compactly in terms of dimensionful parameters, as can be inferred from Eq. (4.A.6). The



www.manaraa.com

74parameters (⇤̃, �⇤̃) were chosen such that they have the following convenient properties:

⇤̃(⌘ = 1/4, ⇤1 = ⇤2 = ⇤) = ⇤ (4.2.7)

�⇤̃(⌘ = 1/4, ⇤1 = ⇤2 = ⇤) = 0. (4.2.8)

Setting ⌘ = 1/4 implies that m1 = m2. Since all cold NSs have the same EOS [77],

spherical NSs with the same mass will also have the same value for ⇤. We have over-

specified Eqs. (4.2.7) and (4.2.8) for clarity. We refer to ⇤̃ as the tidal deformability of a

BNS system throughout this work. For more details regarding this reparameterization,

see [73].3

4.3 Measurability of Tidal Influence

In this work, we use lalinference_mcmc to run full Bayesian simulations for

our parameter estimation investigation into the measurability of tidal deformability.

lalinference_mcmc uses an MCMC sampling algorithm to calculate the posterior prob-

ability density function (PDF) of a detected CBC signal. The algorithm is designed to

e�ciently explore a multi-dimensional parameter space in such a way that the density of

parameter samples is a good approximation to the underlying posterior distribution. In

this section, we briefly outline the algorithm used by lalinference_mcmc. For a more

comprehensive overview, we refer the reader to Refs. [56–58].

4.3.1 MCMC overview

A true GW signal will be buried in detector noise. Given a GW detection, the data

stream segment d(t) will have the following form in the time-domain:

d(t) = hGW(t) + n(t). (4.3.1)

The detector noise is denoted n(t) while the pure GW signal is denoted hGW(t). Since no

GWs have yet been detected by ground-based interferometers, our studies require simu-

lated signals. It is therefore customary to inject a modeled signal with chosen parameters

3Note that, relative to [73], we have pulled out a factor of
p

1� 4⌘ from our definition of �⇤̃ to allow

for nonzero values of �⇤̃ when ⌘ = 1/4. This distinction enables the MCMC algorithm to fully explore

the �⇤̃ parameter space even for equal mass systems.
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To determine the physical properties of a CBC system, we seek to map out the func-

tional form of the posterior probability distribution (posterior for short) of its parameters.

Bayes’ theorem relates the posterior p(~✓|d,H, I) for a set of waveform parameters ~✓ given

a hypothesis H, any background information I, and a data stream segment d(t) to the

prior probability distribution (prior for short) and the likelihood p(d|~✓,H, I):

p(~✓|d,H, I) =
p(~✓|H, I)p(d|~✓,H, I)

p(d|H, I)
(4.3.2)

/ p(~✓|H, I)L(d|~✓,H, I). (4.3.3)

The notation p(a|b) means the probability density of a given b. To be more specific, the

hypothesis here represents the waveform model hH. The posterior is then the probability

that the GW source modeled by the waveform hH that produced the data stream segment

d(t) has the physical properties ~✓. The prior p(~✓|H, I) is the a priori probability that the

system modeled by hH has the physical properties ~✓. The prior reflects everything that we

know about the physical properties of any CBC system before attempting to determine the

parameters of a specific source. The evidence p(d|H, I) is the probability of observing the

data stream segment d(t) with the model hH. The evidence is a normalization factor that

can be used to compare how well di↵erent models would produce the data. The likelihood

L(d|~✓,H, I) = p(d|~✓,H, I) is the probability of observing the data stream segment d(t)

assuming the system that produced it is modeled by hH and has the physical properties

~✓. The likelihood is a measure of how well the model hH with parameters ~✓ matches the

data stream segment d(t). Assuming the noise is stationary and Gaussian, the functional

form of the likelihood when using a single detector n is [16; 78]

L
n

(d|~✓,H, I) / exp

2

64�2

Z 1

0

���d̃
n

(f)� h̃H(f, ~✓)
���
2

S
n

(f)
df

3

75 . (4.3.4)

S
n

(f) is the one-sided noise power spectral density (PSD), d̃
n

(f) is the Fourier transform

of the detector data stream segment, and h̃H(f, ~✓) is a frequency-domain model for the

waveform. When using a network of GW detectors, the posterior probability becomes

p(~✓|d,H, I) / p(~✓|H, I)
Y

n

L
n

(d|~✓,H, I). (4.3.5)
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tion p(~✓|d,H, I). The samples can be binned to produce a histogram of the full multi-

dimensional posterior distribution. Posterior PDFs of fewer dimensions can be produced

by marginalizing the full posterior over parameters that are not of interest. For example,

a 1D PDF for the tidal deformability ⇤̃ can be found by integrating the posterior over

all the other parameters:

p(⇤̃|d,H, I) =

Z

~

✓other

p(~✓|d,H, I)d~✓other, (4.3.6)

where ~✓other are all the parameters in the set ~✓ except ⇤̃. However, since the MCMC

samples follow the posterior distribution, this integral is easily solved by simply binning

only the parameters of interest (in this case ⇤̃).

Various aspects of this algorithm have been fine-tuned to optimize speed and robust-

ness and are outlined in Ref. [79]. This section is meant to merely provide an adequate

overview of the parameter estimation pipeline used in this work. We refer the interested

reader to the following sources for more details [56–58].

4.3.2 Models, Parameters, and Priors

Eq. (4.3.3) is used to calculate the posterior p(~✓|d,H, I), which is the quantity of inter-

est, from the prior p(~✓|H, I) and likelihood L(d|~✓,H, I). It depends on a model hH, the

model source parameters ~✓, and the prior distribution of each parameter. The waveform

models used in this work are the following tidally corrected PN waveform families, which

we outline in Appendix 4.A: TaylorT1, TaylorT2, TaylorT3, TaylorT4, and TaylorF2. To

focus on purely EOS e↵ects, we consider non-spinning BNS systems with no amplitude

corrections. (Parameter estimation can be just as easily performed with spinning wave-

forms, though slightly larger uncertainties in ⇤̃ may arise for NSs with significant spins.)

These assumptions lead to the following 11-dimensional parameter space:

~✓ = {Mc, q, ⇤̃, �⇤̃, D, ◆,↵, �,�ref , tref , }. (4.3.7)

These parameters are: the chirp mass Mc = ⌘3/5M , the mass ratio q = m2/m1 where

m1 > m2, the distance to the binary D, the angle between the line of sight and the orbital
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angle  , and the arbitrary reference phase and time �ref and tref . Since ⇤1 and ⇤2 are

highly correlated, we choose to parameterize in terms of ⇤̃ and �⇤̃. It is known that ⇤̃ is

comparatively more measurable than ⇤1 and ⇤2 individually [59; 60]. We use a uniform

prior distribution in component masses between 1 M�  m2  m1  30 M�, a uniform

prior distribution in volume to D  200 Mpc4, an isotropic prior distribution in sky

location (↵, �) and emission direction (�ref , ◆), a uniform prior distribution in polarization

angle  , and a uniform prior distribution in tref over the data stream segment. We use a

uniform prior distribution in ⇤̃ between 0  ⇤̃  3000 and a uniform prior distribution

in �⇤̃ between �500  �⇤̃  500. These ranges were chosen to include e↵ects from the

majority of possible NS EOSs.5

Since we are concerned only with measuring EOS e↵ects on BNS signals, we fixed all

the injected signals to have the exact same sky position (↵ = 0.648522 and � = 0.5747465),

orientation (◆ = 0.7240786), and polarization ( = 2.228162) for comparison purposes.

We vary the strength of injected signals by adjusting D. We also use a 3-detector advanced

LIGO/Virgo network. We use the PSD of the two advanced LIGO detectors under the

zero-detuned high power configuration [81] and the parameterized advanced Virgo PSD

based on Eq. 6 of [82]. Injection and template waveforms all have a low frequency cuto↵

at flow = 30 Hz and end when the system reaches fhigh = fISCO = c3/(63/2⇡GM), where

fISCO is the GW frequency of the innermost stable circular orbit (ISCO) of a test particle

about a Schwarzschild BH of mass M .

The abrupt termination of waveforms at fISCO is not ideal for parameter estimation.

True gravitational waveforms do not abruptly end at fISCO or any such artificial frequency

cuto↵. Recent work [83] has shown that the abrupt termination of frequency-domain

4Out to this distance, cosmological redshift is negligible, so we assume the intrinsic frequency of the

signal is the same as the observed frequency at the detector. If we were to consider sources out to a

greater distance, cosmological redshift would be an additional parameter that is necessary to deduce the

true values of the component masses and the equation of state parameters [80].
5Note that ⇤̃ may exceed 3000 for low mass NSs with a sti↵ EOS. However, this upper bound does not

a↵ect the results in this chapter, because the posterior is found to be fully contained within the region

of prior support for all cases considered.
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mation. For instance, since fISCO depends on the total mass of the system, abruptly

ending waveforms at this frequency can reveal more information about a system’s mass

than is available in practice. We ran tests with template waveforms that were all ter-

minated at an identical fixed frequency cuto↵, which had no dependence on the model

parameters, to eliminate any information in our waveforms’ abrupt frequency cuto↵. We

found that our results did not change in any noticeable way, which is expected since

fISCO for BNS systems is e↵ectively above our detectors’ sensitive frequency band [83].

In addition to the e↵ects of abrupt waveform termination, a given BNS system may have

an fISCO that is greater than the frequency at which the two stars come into contact,

which suggests using a lower frequency cuto↵ for such systems. However, only a few of

the systems considered in this work have fcontact < fISCO, and we found that this e↵ect

only reduces the measurability of tidal parameters for these systems by roughly 5% or

less.

4.3.3 Measurability of Tidal Deformability

In order to simulate the parameter estimation of a GW signal, one typically injects a

model waveform into a data stream segment consisting of simulated detector noise. The

strength of the injected signal relative to the detector noise is characterized by the SNR.

The SNR ⇢
n

of an injection into a single GW detector n is

⇢
n

=

s

4

Z 1

0

|h̃(f, ~✓)|2
S

n

(f)
df, (4.3.8)

where h̃(f, ~✓) is the injected waveform model in the frequency domain. For a collection

of detectors, the network SNR ⇢net is defined to be

⇢net =

sX

n

⇢2
n

. (4.3.9)

We report on the optimal measurability of tidal influences in BNS systems assuming

a 3-detector LIGO/Virgo network. We follow a similar procedure to the one used in

[84], which details the statistical uncertainties in the mass parameters and sky location

parameters of BNS systems that are expected to be achieved with advanced detectors.
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synthetic noise to our injected signal, which essentially means that we set n(t) = 0 in

Eq. (4.3.1). However, we still calculate the likelihood and the network SNR by dividing

by the detector PSD, which is the variance of the noise. In this way, we incorporate the

overall e↵ect of noise without dealing with the statistical fluctuations of individual noise

realizations. We refer to this procedure as “injecting into zero-noise” [84].

We inject into zero-noise for two reasons. The first reason is to report measurement

uncertainties for typical systems. However, individual results depend on individual real-

izations of the noise at the time of detection. It is shown in [85] that their “averaged”

posterior PDF, or more precisely the prior distribution multiplied by a likelihood that is

geometrically averaged over a large number of noise realizations, is recovered by setting

the noise to zero. We can therefore estimate the most probable measurement uncertainty

of tidal parameters by simply injecting that signal into zero-noise [68; 84–86]. This saves

us from having to perform many MCMC simulations with di↵erent noise realizations.

While this approach only considers the overall e↵ect of noise, we discuss the e↵ect of

individual noise realizations in Sec. 4.5.2. The second reason for injecting into zero-noise,

which we use in Sec. 4.5.1, is to isolate the e↵ects of systematic error in our analysis. By

injecting into zero-noise, we are able to disentangle modeling bias from noise realization

e↵ects without having to perform many MCMC simulations, which are computationally

expensive [87].

In Fig. 17, we present the 1D and 2D posterior PDFs for ⇤̃ and �⇤̃ of a typical BNS

system. The true signal was injected with ⇢net = 32.4, which is considered very large

(perhaps a one-per-year event by 2019 [8]). We use tidally corrected TaylorF2 waveforms

for the injected waveform as well as for the recovery template waveforms. The injection

has the following properties: m1 = m2 = 1.35 M�, ⇤̃ = 590.944, and �⇤̃ = 0, which is

consistent with the MPA1 EOS model6 [1]. We find that the injected value of ⇤̃ is well

6We actually use the parameterized EOS presented in [1] that matches the theoretical MPA1 EOS,

as well as many other theoretical EOSs, to a few percent. This approximation is used throughout this

work for our convenience. Since the EOS is only used to estimate injected ⇤̃ values, our results will not

be a↵ected by this approximation.
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Figure 17 : Marginalized 1D (left and middle) and 2D (right) posterior probability density functions for
⇤̃ and �⇤̃ of a 1.35 M�:1.35 M� BNS system with ⇢net = 32.4. The shaded regions in the 1D PDFs
enclose 2� (95%) confidence regions. The color bar in the 2D PDF labels the (unnormalized) probability
density. The injected values for ⇤̃ and �⇤̃ are consistent with the MPA1 EOS model [1] and are marked
with straight dashed lines. These plots are PDFs smoothed with a Gaussian kernel density estimator.
For these results, we injected into zero-noise (see Sec. 4.3.3).

recovered.7 However, advanced detectors are not able to discern �⇤̃ contributions to the

waveform even at a network SNR of 32.4. This is expected because �⇤̃ only shows up

in the 6PN tidal correction, which is O(10%) as big as the 5PN term, and additionally

contributes little to the 6PN correction since �⇤̃/⇤̃ ⇠ 0–0.01 [73].

In Table 1 we outline the measurement uncertainties for the tidal deformability pa-

rameter ⇤̃ for several equal mass and unequal mass BNS systems. We compute the 1�

and 2� measurement uncertainty interval by determining the smallest interval in ⇤̃ that

contains 68% and 95% of the total marginalized posterior probability. We then report

the lower and upper bound on this confidence interval. The 1� confidence interval for

a 1.35 M�:1.35 M� BNS system consistent with the MPA1 EOS model is (382.0,636.7)

for ⇢net = 30. We find that the measurability of the other parameters are not noticeably

a↵ected by including tidal parameters in our analysis.

We can also compare our MCMC results to a few FM results. The FM study by

Favata [73] uses tidally corrected PN waveforms with a high frequency cuto↵ of 1000 Hz.

Favata finds the 1� measurement uncertainty of the tidal deformability parameter to be

roughly 27% for a 1.40 M�:1.40 M� BNS system with ⇤̃ ⇡ 600 at an SNR of 30. Damour,

Nagar, and Villain [65] use tidally corrected EOB waveforms that end at contact. In their

7The peak of the 1D PDF for ⇤̃ is consistently found to be displaced from the injected value for equal

mass and near equal mass systems. This is a result of marginalizing over the other ten parameters [84],

in particular the mass ratio q, whose prior distribution caps o↵ at q = m2/m1 = 1.
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Table 1 : The 1� (68%) and 2� (95%) confidence intervals (min,max) for ⇤̃. The BNS systems considered
are labeled by their injected masses (in units of solar mass) and tidal deformability ⇤̃. Both equal mass
and unequal mass systems ranging from mmin = 1.20 M� to mmax = 2.10 M� are considered. The
injected values for ⇤̃ are consistent with the MPA1 EOS model [1]. We report confidence intervals for
systems with a ⇢net of both 20 and 30. For these results, we injected into zero-noise (see Section 4.3.3).

⇢net = 20 ⇢net = 30

m1 m2 ⇤̃ 1� 2� 1� 2�

1.20 1.20 1135.630 (553.8 , 1258.1) (134.6 , 1700.1) (838.7 , 1193.8) (516.6 , 1359.4)

1.35 1.35 590.944 (251.3 , 690.2) ( 60.7 , 963.0) (382.0 , 636.7) (182.3 , 750.8)

1.50 1.50 318.786 (113.2 , 398.9) ( 22.9 , 576.8) (162.1 , 357.4) ( 63.9 , 447.7)

1.65 1.65 175.963 ( 54.5 , 250.2) ( 9.6 , 377.2) ( 63.5 , 213.9) ( 14.0 , 290.8)

1.80 1.80 98.191 ( 29.2 , 176.8) ( 4.9 , 274.9) ( 28.9 , 136.1) ( 5.0 , 196.8)

1.95 1.95 54.670 ( 20.1 , 132.5) ( 3.5 , 214.4) ( 16.6 , 96.1) ( 2.6 , 148.2)

2.10 2.10 29.844 ( 14.8 , 104.8) ( 2.1 , 174.4) ( 11.7 , 74.0) ( 1.9 , 118.6)

1.35 1.20 820.610 (433.7 , 1017.6) (102.7 , 1381.7) (612.9 , 941.3) (340.7 , 1094.6)

1.35 1.50 435.585 (200.0 , 574.9) ( 44.4 , 814.5) (282.5 , 518.0) (125.5 , 626.1)

1.35 1.65 328.177 (196.1 , 570.5) ( 45.5 , 834.6) (221.3 , 495.9) ( 85.5 , 619.1)

1.35 1.80 252.398 (155.1 , 593.1) ( 33.0 , 907.0) (155.9 , 433.5) ( 45.5 , 598.6)

1.35 1.95 197.899 (119.0 , 546.9) ( 21.5 , 922.6) (107.3 , 348.2) ( 24.7 , 489.1)

1.35 2.10 157.974 ( 90.7 , 445.4) ( 15.8 , 819.9) ( 79.3 , 296.8) ( 16.2 , 424.9)

FM study, they find a slightly better measurement uncertainty of roughly 21% for a 1.40

M�:1.40 M� BNS system with ⇤̃ ⇡ 600 at an SNR of 30.8 This improvement is likely

due to the extra high frequency information included in the EOB waveforms. Read et

al. [63] use NR waveforms in their FM study, though they rely on a somewhat crude

finite di↵erence approximation. For a 1.35 M�:1.35 M� BNS system with ⇤̃ ⇡ 600 at

an SNR of 30, they find a measurement uncertainty of roughly 16% with full hybrid

waveforms, though they do not consider correlations with other parameters.9 Again, the

8Since [65] does not include the measurement uncertainty of a BNS system with ⇤̃ ⇡ 600, this

measurement uncertainty was estimated via interpolation.
9The finite di↵erence approximation is between the EOS H and HB: �⇤̃ = (⇤̃H� ⇤̃HB)/||hH�hHB|| =

85, which results in a measurement uncertainty of �⇤̃/⇤̃H = 0.16 when scaled to an SNR of 30.
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included in their waveforms. In our MCMC study, we find the measurement uncertainty

of the tidal deformability parameter to be roughly 21% for a 1.35 M�:1.35 M� BNS

system with ⇤̃ ⇡ 600 at an SNR of 30 in a single advanced LIGO detector. This is in

general agreement with existing FM calculations.

4.4 Constraining NS EOS

The NS EOS describes the structure of all cold NSs in equilibrium by relating NS state

variables, such as pressure and density. Simultaneous NS mass-radius measurements, or

equivalently mass-�measurements, can highly constrain the NS EOS [88–90]. While many

accurate NS mass measurements have been made, corresponding radius measurements are

still needed [91].

While ⇤1 ⇠ (R1/m1)5 and ⇤2 ⇠ (R2/m2)5 are poorly measured by advanced GW

detectors due to their strong correlation, the tidal deformability parameter ⇤̃, which is

a linear combination of (⇤1, ⇤2), is better measured. Ground-based interferometers are

most adept at measuring a system’s chirp mass Mc. In the same way that a binary’s

chirp mass is a mass-like parameter that contains information about the mass of both

components, the fifth root of the tidal deformability parameter ⇤̃1/5 can be thought of

as a dimensionless radius-like parameter that contains information about the radius of

both components. While GW detectors may not be able to simultaneously constrain the

mass and radius of individual NS’s, we show that they can simultaneously constrain the

mass-like and radius-like parameters describing the binary system as a whole. To further

this analogy, we choose to define a conveniently scaled dimensionful radius-like parameter

Rc = 2GMc⇤̃1/5/c2, which we call the binary’s chirp radius. Therefore, making a Mc–

Rc measurement of a CBC system is analogous to making a mass–radius measurement

of a single NS star. Note that the component masses and radii are entangled in the

former case and are only determined in combination. The question then becomes: “Does

measuring the chirp mass and the chirp radius as opposed to the individual mass and

individual radius contain enough information to constrain the NS EOS?”

In Fig. 18, we take a mass-radius plot with multiple theoretical EOS curves [1] (upper
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to the extra degrees of freedom from not specifying individual masses and radii (upper

right). The three horizontal, black lines are the 1� confidence regions of three recovered

injections. Because chirp mass is so well measured, these confidence regions appear to be

lines due to the aspect ratio of this plot. The three bottom plots in Fig. 18 are zoomed-in

plots of each recovered injection. From left to right, the important parameters for each

injection are: m1 = m2 = 1.50 M� and ⇤̃ = ⇤1 = ⇤2 = 318.786, m1 = m2 = 1.35 M�

and ⇤̃ = ⇤1 = ⇤2 = 590.944, and m1 = m2 = 1.20 M� and ⇤̃ = ⇤1 = ⇤2 = 1135.63. The

injections all correspond to the EOS MPA1 [1] and have ⇢net = 30. Fig. 18 demonstrates

that simultaneous Mc–Rc measurements can indeed constrain the NS EOS. However,

because certain regions of parameter space can be described by overlapping EOS curves,

BNS observations with varying values for chirp mass will likely need to be observed before

tight constraints on the NS EOS can be made with this approach.

This inversion of Mc–Rc measurements to EOS constraints is similar to the inverse

stellar structure problem described in [88–90]. Other methods for constraining the NS

EOS with GW detectors are discussed in Sec. 4.6.

4.5 Sources of Error

Sources of error in estimating the parameters of a CBC system given its gravitational

signal can be categorized as statistical and/or systematic. Statistical error is due to the

presence of random detector noise. In Sec. 4.3.3, we focused on the overall e↵ect of

detector noise. In this section, our focus is on the e↵ect of individual noise realizations.

The kind of systematic error that we are studying arises because our template waveforms

only approximate true signals. Statistical error is SNR-dependent, since it depends on

the relative strength of the signal to the detector noise, while systematic error is SNR-

independent. In this section, we present the e↵ects of both systematic error and individual

noise realizations on the ability of advanced ground-based interferometers to measure tidal

deformability.
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Figure 18 : NS mass-radius plot for a sample of NS EOS models found in the literature [1] (top left).
The Mc–Rc plot (top right), where Rc is defined in Sec. 4.4, depicts the same EOSs as the mass-radius
plot now smeared out due to the extra degrees of freedom from not specifying individual masses and
radii. We consider NSs with masses that range from 1 M� to the maximum allowed mass for each EOS.
The three horizontal, black lines are the 1� (68%) confidence regions of three recovered injections. The
three bottom plots are zoomed-in to show these recovered injections more clearly. The injected values
for Mc and Rc are consistent with the MPA1 EOS model and are marked with straight, dashed lines.
For these results, we injected into zero-noise (see Sec. 4.3.3).

4.5.1 Systematic Error

The PN approximation to the energy and luminosity of a CBC system is an expan-

sion of the equations of motion about small characteristic velocities, or small frequencies

(v ⇠ f 1/3
gw ). Currently, the point-particle corrections to the CBC energy and luminosity

are known to 3.5PN order [10]. While PN waveforms match a true GW signal at small

frequencies, they are unreliable at high frequencies. Since tidal influences become signif-

icant at high frequencies, it is expected that the systematic error from having unreliable

waveforms at high frequencies will bias the recovery of tidal parameters. The question is:

“By how much?”

We expect that the deviation of PN waveform families away from the true CBC

waveform will be comparable to the amount that they deviate away from each other.
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another at higher orders. We use the fact that we cannot say which PN family is more

accurate as a simple way to parameterize our ignorance of unknown higher order PN

terms. We test systematic bias by injecting one PN waveform family and recovering with

another. Because all PN waveform families are considered viable, this gives at least a

lower bound on the systematic error due to modeling bias. In this way, we can get an

order of magnitude estimate of the systematic bias that results from using waveforms

that are unreliable at high frequencies to estimate tidal parameters whose e↵ects arise at

high frequencies.

In Fig. 19, we present example 1D posterior PDFs for ⇤̃. We inject signals from

each of the five PN waveform families derived in Appendix 4.A but only recover with

TaylorF2 templates. Since injected waveforms are only generated once while template

waveforms are generated millions of times during an MCMC run, we only use TaylorF2

templates, because they are generated much faster than the other PN waveform families.

The injected component masses are labeled in each figure’s title, while the injected value

of ⇤̃, which is consistent with the EOS labeled in the legend, is marked by a dashed,

vertical line. Each injection has a network SNR of 32.4 and was injected into zero-noise

in order to isolate systematic error from statistical error. (Remember that the e↵ects of

noise are not completely ignored by injecting into zero-noise. The PSD is still used to

calculate likelihood and network SNR.) While we only present three mass combinations

and one EOS model in Fig. 19, we also find similar results when considering several other

equal and unequal mass combinations and EOS models.

We find that systematic error can be significant in each of the mass combinations

and EOSs considered. In particular, the TaylorT4 waveform family has been found to be

remarkably similar to equal mass numerical relativity (NR) waveforms [92]. Therefore, for

a typical m1 = m2 = 1.35 M� BNS system with a moderate EOS, say MPA1, systematic

error will likely bias the maximum likelihood recovery of ⇤̃ by (⇤̃inj � ⇤̃rec)/⇤̃inj ⇠50%.

It is also interesting to note that the TaylorT3 injected waveforms are all recovered

with little to no tidal contribution with TaylorF2 templates. Additionally, the TaylorT3

injected waveforms were recovered with a chirp mass bias of roughly twice its standard
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Figure 19 : Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled
by the masses in the title) each with ⇢net = 32.4. The injected ⇤̃ values are consistent with the MPA1
EOS model [1] and are marked with straight, dashed lines. These plots are PDFs smoothed with a
Gaussian kernel density estimator. To generate a single plot, we inject BNS signals modeled by each of
the five PN waveform families derived in Appendix 4.A. Though the waveform family for each signal
is di↵erent, the injected waveform parameters are identical. The five PDFs, which are labelled by the
injected waveform family, are all recovered using TaylorF2 waveform templates. The deviation of each
peak away from the injected value is due to the systematic error in the PN waveform approximants. For
these results, we injected into zero-noise (see Sec. 4.3.3).

deviation, whereas none of the other injected waveforms were recovered with noticeable

bias in chirp mass. It was previously seen in [10] that the TaylorT3 approximant agrees

poorly with other PN approximants due to its peculiar termination conditions, and we

suspect this also explains the biases seen here.

4.5.2 Noise Realizations

Statistical error is due to random fluctuations in detector noise. In Sec. 4.3.3, all signals

were injected into zero-noise, which gives the posterior averaged over noise realizations

[85]. However, to get an understanding of how much a particular instance of noise can

a↵ect parameter recovery, we inject the same signal into ten di↵erent synthetic noise

realizations (Fig. 20). Here, both the injected waveform model and the recovery waveform

model is TaylorF2, and each injection has ⇢net = 32.4.

We find that the measurability of ⇤̃ can vary dramatically from one instance of noise

to the next. A few out of the ten PDFs plotted in Fig. 20 have significantly broadened

peaks, and some even inherit strange multimodal behavior. Therefore, even though the

true parameter value still lies within the 90% confidence interval 90% of the time (as

expected [67]), statistical error occasionally acts to significantly reduce the measurability

of ⇤̃. Unfortunately some BNS detections may provide uninformative tidal deformability
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Figure 20 : Marginalized 1D posterior probability density functions for ⇤̃ of three BNS systems (labelled
by the masses in the title) each with ⇢net = 32.4 (bottom). The injected ⇤̃ values are consistent with
the MPA1 EOS model [1] and are marked with straight, dashed lines. These plots are PDFs smoothed
with a Gaussian kernel density estimator. To generate a single plot, we inject the same BNS signal
into ten di↵erent noise realizations. The deviation of each peak away from the injected value is due to
the statistical error from the presence of random detector noise. Each PDF has an associated box-and-
whisker representation (top), where the edges of each box mark the first and third quartile, the band
inside each box is the median, and the end of the whiskers span the 90% confidence interval.

estimates due to random detector noise. Multiple detections might need to be combined

to overcome the e↵ects of noise, which was successfully shown in [71].

4.6 Conclusion/Discussion

In Sec. 4.3.3, we have shown with full Bayesian simulations that tidal deformability in

BNS systems is measurable with the advanced LIGO/Virgo network (see Table 1). This

is in general agreement with FM studies [63; 65; 73] and compliments the Bayesian

results shown in [71]. For a canonical 1.35 M�:1.35 M� BNS system with the moderate

EOS MPA1 recovered using the advanced LIGO/Virgo network, we find that the 1�

measurement uncertainty of ⇤̃ (or the radius-like ⇤̃1/5) will likely be ⇠40% (⇠8%) for a

source with ⇢net = 20 and ⇠20% (⇠4%) for a source with ⇢net = 30.

We showed in Sec. 4.4 how simultaneous measurements of ⇤̃ and chirp mass can be

used to constrain the NS EOS. Other studies in constraining the NS EOS with future

GW observations include work by Del Pozzo et al. [71], in which Bayesian simulations

are used to incorporate information from tens of detections to discriminate between sti↵,

moderate, and soft EOSs. While Del Pozzo et al. showed that tens of BNS sources can
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even be possible to constrain the full form of the NS EOS over all masses.

In the work presented here, we have examined the ability of GW detectors to measure

the tidal parameters ⇤̃ and �⇤̃. The main quantity of interest, however, is the universal

EOS that is common to all NSs. One method to measure the EOS is to construct a

parameterized EOS (e.g. [1; 93; 94]), then replace the tidal parameters in the waveform

with EOS parameters. This method allows one to use physical and astrophysical infor-

mation to place tighter constraints on the priors for the EOS parameters in contrast to

the less physically motivated priors on ⇤̃ and �⇤̃. Additionally, this allows for combining

information from several BNS sources to more tightly constrain EOS parameters. This

approach can be found in Ref. [95] and is the topic of Ch. 5.

Both systematic error and individual noise realizations have been shown to signif-

icantly a↵ect the measurement of tidal deformability. Individual instances of detector

noise can severely broaden the peaks of the marginalized ⇤̃ posteriors, but can be over-

come by combining information from multiple sources, which averages out the e↵ects of

noise. This would require many (⇠20) BNS detections [71], instead of just a few loud

signals. Both optimistic and realistic estimates for the BNS detection rate predict that

it will take less than a year after reaching design sensitivity (⇠2019) to constrain the

NS EOS with GW signals. However, according to pessimistic estimates, this may take

considerably longer [53]. Systematic error, which can significantly bias the recovered pa-

rameters, is overcome by improving current waveforms. Higher order point-particle terms

would be required in order to trust PN waveform families at frequencies su�ciently high

to recover tidal deformability. However hybrid waveforms, which are PN waveforms at

low frequencies stitched to NR waveforms at high frequency, or phenomenological wave-

forms, which are waveforms fitted to NR, will likely be required to reliably capture high

frequency e↵ects, such as tidal deformability [61; 63; 64; 96]. We hope that these re-

sults motivate the importance of prioritizing waveform development that incorporates

NS matter e↵ects.
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We now adopt units where G = c = 1. The equations that describe the CBC orbital

phase evolution are the following:

d�

dt
=

v3

M
(4.A.1)

dv

dt
=

dv

dE

dE

dt
=
�L

E 0 , (4.A.2)

where � is the binary’s orbital phase, t is time, the prime represents a derivative with

respect to v, and the requirement for energy balance is dE/dt = �L. Integrating

Eqs. (4.A.1) and (4.A.2) give the alternate form:

t(v) = tref +

Z
vref

v

E 0(u)

L(u)
du (4.A.3)

�(v) = �ref +

Z
vref

v

u3

M

E 0(u)

L(u)
du, (4.A.4)

where tref = t(vref), �ref = �(vref), and vref is an arbitrary reference velocity, following

[10]. Solutions for �(t) and v(t) fully determine a non-spinning CBC waveform with

polarizations that go like

h+(t) / v2 cos 2�

h⇥(t) / v2 sin 2�.

Because there are several ways to solve for the orbital phase starting with the same

energy and luminosity inputs, there are several di↵erent PN waveform families. These PN

families are equivalent up to unknown truncation terms at the next PN order. We briefly

outline each waveform family below and point out how tidal corrections are incorporated

in their derivation. See [10] for the point-particle terms for each waveform family and

details regarding initial conditions.

4.A.1 TaylorT1

The TaylorT1 approximant is achieved by numerically solving Eqs. (4.A.1) and (4.A.2) for

�(t) and v(t). Tidal corrections enter through the energy derivative E 0 and the luminosity
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E(v) = Epp + �Etidal

E 0(v) = E 0
pp + �E 0

tidal

L(v) = Lpp + �Ltidal,

where �Etidal and �Ltidal come from Eqs. (4.2.2) and (4.2.3) respectively.

4.A.2 TaylorT2

The TaylorT2 approximant is achieved by solving Eqs. (4.A.3) and (4.A.4). First, the

ratio E 0/L is expanded about v = 0 to consistent PN order, then the result is analytically

integrated to find t(v) and �(v). Tidal corrections enter through the energy derivative E 0

and the luminosity L and appear at 5PN and 6PN order in t(v) and �(v):

��tidal(v) = � 1

32⌘x5/2

✓
72

�1

� 66

◆
�1

M5
x5

+

✓
15895

56�1

� 4595

56
� 5715

28
�1 +

325

14
�2

1

◆
�1

M5
x6 + (1 ! 2)

�

�ttidal(v) = � 5M

256⌘x4

✓
288

�1

� 264

◆
�1

M5
x5

+

✓
3179

4�1

� 919

4
� 1143

2
�1 + 65�2

1

◆
�1

M5
x6 + (1 ! 2)

�
.

Here, x = v2 = (⇡Mfgw)2/3 is the PN expansion parameter. The tidal corrections add

linearly to the point-particle terms:

�(v) = �pp(v) + ��tidal(v)

t(v) = tpp(v) + �ttidal(v).

These parametric equations are then solved numerically to obtain �(t) and v(t).

4.A.3 TaylorT3

The TaylorT3 approximant starts by following the TaylorT2 approach. After t(v) and

�(v) are found, the following reparameterization is used:

✓(t) =


tref � t(v)

5M
⌘

��1/8

.
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teristic velocity v(✓) can then be used to find the 5PN and 6PN tidal corrections to the

phase �(✓) = �(v(✓)) as well as the 5PN and 6PN tidal corrections to the GW frequency

fgw = v3/(⇡M):

��tidal(✓) = � 1

⌘✓5

✓
9

128�1

� 33

512

◆
�1

M5
✓10+

✓
23325

229376�1

� 12995

1376256
� 7285

57344
�1 +

4885

114688
�2

1

◆
�1

M5
✓12 + (1 ! 2)

�

�fgw,tidal(✓) =
✓3

8⇡M

✓
27

256�1

� 99

1024

◆
�1

M5
✓10+

✓
18453

131072�1

+
79

65536
� 14055

65536
�1 +

171

2048
�2

1

◆
�1

M5
✓12 + (1 ! 2)

�
.

The tidal corrections add linearly to the point-particle terms:

�(✓) = �pp(✓) + ��tidal(✓)

fgw(✓) = fgw,pp(✓) + �fgw,tidal(✓).

These equations are essentially the equations for �(t) = �(✓(t)) and v(t) =

[⇡Mfgw(✓(t))]1/3.

4.A.4 TaylorT4

The TaylorT4 approximant is achieved by numerically solving Eqs. (4.A.1) and (4.A.2)

for �(t) and v(t) after first expanding the ratio E 0/L about v = 0 to consistent PN order.

The 5PN and 6PN tidal corrections are:

�v̇tidal =
32

5

⌘

M
x9/2

✓
72

�1

� 66

◆
�1

M5
x5

+

✓
4421

56�1

� 12263

56
+

1893

4
�1 �

661

2
�2

1

◆
�1

M5
x6 + (1 ! 2)

�
,

where the dot represents a derivative with respect to t. The tidal corrections add linearly

to the point-particle terms:

v̇(v) = v̇pp(v) + �v̇tidal(v).



www.manaraa.com

924.A.5 TaylorF2

The CBC gravitational waveform can also be derived in the frequency domain using the

stationary phase approximation. The waveform takes the form

h̃(fgw) = A(fgw) exp [i (fgw)] ,

where  (fgw) = 2⇡fgwt(v)� 2�(v)�⇡/4. Substituting Eqs. (4.A.3) and (4.A.4) for t and

� into  yields:

 (fgw) = 2⇡fgwtref � 2�ref �
⇡

4
+ 2

Z
vref

v

v3 � u3

M

E 0(u)

L(u)
du. (4.A.5)

The tidal corrections are found by expanding the ratio E 0/L about v = 0 to consistent

PN order and integrating the expression in Eq. (4.A.5). By choosing to neglect amplitude

corrections, the waveform becomes:

h̃(f) = Af�7/6
gw exp [i (fgw)] ,

where A /M5/6
c /D. The chirp mass Mc = ⌘3/5M , and D is the distance between the

GW detector and the binary. The 5PN and 6PN tidal corrections are:

� tidal =
3

128⌘x5/2


�
✓

288

�1

� 264

◆
�1

M5
x5

�
✓

15895

28�1

� 4595

28
� 5715

14
�1 +

325

7
�2

1

◆
�1

M5
x6 + (1 ! 2)

�
. (4.A.6)

The tidal corrections add linearly to the point-particle terms:

 (v) =  pp(v) + � tidal(v).

The TaylorF2 waveform is one of the most utilized CBC waveforms because its fully

analytic frequency-domain form makes it the fastest PN waveform to generate.



www.manaraa.com

93

Chapter 5

Reconstructing the neutron-star

equation of state with

gravitational-wave detectors from a

realistic population of inspiralling

binary neutron stars1

5.1 Introduction

In Sec. 4.4, we presented a method for constraining the NS EOS by measuring allowed

areas in chirp mass – chirp radius space and excluding candidate EOSs that do not

pass inside that area. In this chapter, we introduce an alternate approach that seeks to

directly measure the NS EOS. We do this by parameterizing the NS EOS and measuring

the parameters of this model. This novel approach allows for straightforward inclusion

of physical and observationally motivated priors on the NS EOS, including causality and

measurements of massive NSs, and any a priori information about the functional form

of the EOS in general. Additionally, since all NSs share the same EOS, we can combine

information from multiple observations into a single constraint of the NS EOS.

1This chapter is based entirely o↵ of the work published in Ref. [95].
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the NS EOS and outline the parameterization that we use for EOS measurements. Then

we discuss our 2-stage Bayesian parameter estimation approach in Sec. 5.3. In Sec. 5.4,

we present results from a comprehensive study over a range of observation scenarios using

a simulated BNS population and review the e↵ect of error on our analysis. We finish with

a discussion on our findings in Sec. 5.5.

5.2 The EOS

As with any equation of state, the NS EOS is a relationship that describes the properties

of NS matter under certain physical conditions. More specifically, it is an equation that

relates state variables, typically pressure p and energy density ✏, to one another. Finding

this relationship EOS(p, ✏) = 0 for NS matter has proven di�cult because replicating

such densities while remaining in equilibrium ground state has so far been unachievable

in laboratories on Earth. Therefore the NS EOS is still highly unconstrained today.

In a standard analysis, an EOS would be used to predict the observable parameters

of NSs, which include mass, radius, tidal deformability, etc. Much literature has been

devoted to developing candidate theoretical EOS models that describe NS matter. The

predictions of observable parameters based on candidate EOSs can then be compared to

observations and tested for consistency. For instance, it has been shown that the NS EOS,

which is often expressed as p(✏), can be directly calculated from the relationship between

NS masses and radii r(m) (as well as mass and tidal deformability �(m)) [97]. However,

since simultaneous measurements of mass and radius for a given NS have historically been

di�cult to obtain [98], the most successful attempts at constraining the NS EOS come

from precise mass measurements of the heaviest NSs observed. With such measurements,

any theoretical candidate EOS model whose r(m) form does not support NSs at such

high masses can be eliminated from contention.

However, there is an alternative approach to finding the EOS. Instead of relying on

a wide variety of candidate EOSs to contain the true NS EOS and ruling out candidates

until only the true EOS is left, one could instead model the NS EOS incorporating what

little is actually known about the EOS while also leaving free parameters that represent
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observationally to directly measure the NS EOS. The advantage of such an approach is

that it does not rely on the production of candidate EOSs; the disadvantage is that any

EOS measurement is inherently model-dependent. Therefore, your model should be able

to span all possible unconstrained EOS candidates without incorporating too many free

parameters.

While the NS EOS is highly unconstrained, there are still a few things that are known

about its form:

1. The EOS is known below a certain density ⇢0.

2. The EOS p(✏) must be a monotonically increasing function.

3. The speed of light must be greater than the speed of sound at all densities.

4. The EOS must support all observed NS masses.

We consider these to be a priori constraints on the EOS and use this information in our

model and our analysis. Therefore, we seek a parameterized model that not only follows

these rules but also has enough flexibility to match the true NS EOS, whatever it might

be. While the literature provides several adequate EOS representations, for this first

analysis, we choose to employ the 4-piece polytropic parameterization of [99] due to its

frequent use in gravitational-wave literature.

The 4-piece polytropic parameterization is constructed as follows. Four polytropic

segments

p(⇢) = K
i

⇢�i , (5.2.1)

are continuously stitched together to form our model. Here p is the pressure, K is a

polytropic constant, ⇢ is the rest-mass density, and � is an adiabatic index. Note that

since the energy density is a function of the rest-mass density ✏ = ✏(⇢), the EOS p(✏)

is equivalently represented as a function of the rest-mass density p(⇢) = p(✏(⇢)). The

NS core is represented by three polytropes joined together at the two fixed dividing

densities ⇢1 = 1014.7 g/cm3 and ⇢2 = 1015 g/cm3. The lower density crust is modeled by

a fourth fixed polytrope that is fitted to the Sly EOS [99]. The point at which the lowest
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Figure 21 : Depiction of 4-piece polytropic EOS model from Ref. [1] used as our NS EOS model. The
leftmost polytrope is fitted to the SLy candidate EOS and represents the fixed crust. The next three
polytropes have adiabatic indexes �1, �2, �3, and are stitched together at the densities ⇢1 and ⇢2

represented by vertical gray lines. The pressure p1 at which the middle two polytropes are joined sets
the pressure scaling.

density polytrope describing the core is joined to this fixed crust polytrope is determined

by the overall pressure scaling, which is controlled by the pressure at the first joining

density p1 = p(⇢1). This results in a 4-piece polytropic EOS model with four independent

parameters ~✓EOS = {log(p1), �1, �2, �3} (Fig. 21). This model has been shown to match

a wide range of candidate EOSs to a few percent making it a useful model for EOS

measurements. For more details, see [99].

This 4-piece polytropic model is a monotonically increasing function (dp/d✏ � 0) that

converges to the same known form below ⇢ = ⇢0. Therefore conditions 1 and 2 are built

directly into our EOS model. However, conditions 3 and 4 are not always satisfied with

this model. In section 5.3, we outline how these conditions are built into our analysis by

including them as a priori information used for updating our measured EOS posteriors.

We incorporate EOS e↵ects into the gravitational waveform using this EOS fit.
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bility �(m|EOS), by specifying the four parameters of our model, we can determine

the tidal deformability parameters � for a NS given its mass. In this way, EOS ef-

fects enter the gravitational waveform through the calculating of the tidal deformability

� = �(m| log(p1), �1, �2, �3) as described in Sec. 4.2.

5.3 Two-stage MCMC approach

In Ch. 4, we used MCMC simulations to estimate the posterior distribution p(~✓|d,H, I)

for several simulated BNS inspiral events whose waveforms were modeled by the pa-

rameters ~✓ = {Mc, q, ⇤̃, �⇤̃, D, ◆,↵, �, ,�ref , tref}. In doing so, we first had to de-

velop the LALInferenceMCMC sampler to take steps in the tidal deformability parame-

ters ~✓tidal = {⇤̃, �⇤̃}. We then marginalized over all extrinsic parameters to find the

marginalized posterior distribution p(Mc, q, ⇤̃, �⇤̃|d,H, I) of the intrinsic parameters.

We now seek to estimate the marginalized posterior distribution

p(~✓EOS|d1, . . . , dn

,H, I) for n BNS events whose waveforms are modeled by the

EOS parameters ~✓EOS = {log(p1), �1, �2, �3} instead of the tidal deformability pa-

rameters ~✓tidal = {⇤̃, �⇤̃}. The full set of parameters in this case, including external

parameters, is ~✓0 = {Mc, q, log(p1), �1, �2, �3, D, ◆,↵, �, ,�ref , tref}. Developing the

LALInferenceMCMC sampler to take steps in the EOS parameters ~✓EOS also involves

calculating � = �(m|~✓EOS) for each proposed step, which is not a trivial transformation.

With the utilities available to my collaborators and I at the time, it was more convenient

to use a two-stage MCMC approach to estimate the marginalized posterior distribution

when including EOS parameters. Additionally, since all NS matter is governed by the

same EOS, the second step of this approach allows us to combine information from

multiple inspiral events to put tighter constraints on the EOS parameters, as was

demonstrated in [100]. We have since developed the LALInferenceMCMC sampler to take

steps in the EOS parameters, and the results match those from our two-stage approach.
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We first derive the two-stage approach, which follows Sec. IV.A in Ref. [95]. Since we

seek to measure the NS EOS, our primary goal is to find the marginalized posterior

PDF for just the EOS parameters. When considering a single inspiral event, this would

normally be calculated by finding the full posterior PDF and integrating out all non-EOS

parameters:

p(~✓EOS|d,H, I) =

Z
p(~✓0|d,H, I)d~✓other, (5.3.1)

where ~✓0 = {~✓EOS, ~✓other}. However, as mentioned above, the calculation of p(~✓0|d,H, I)

requires us to develop the LALInferenceMCMC sampler to take steps in EOS parameters.

We wondered if we could somehow use the MCMC from the original parameterization

(~✓ = {Mc, q, ⇤̃, �⇤̃, D, ◆,↵, �, ,�ref , tref} = {~✓tidal, ~✓other}) to estimate p(~✓EOS|d,H, I).

We start by treating the EOS parameters as extra parameters independent of the

existing tidal parameters, and we will later use the fact that the EOS parameters and the

mass parameters together determine the tidal parameters. The marginalized posterior of

this system is

p(~✓EOS|d,H, I) =

Z
p(~✓EOS, ~✓|d,H, I)d~✓, (5.3.2)

When considering n events that are known to have the same EOS parameters, this be-

comes:

p(~✓EOS|d1, . . . , dn

,H, I) =

Z
p(~✓EOS, ~✓1, . . . , ~✓n

|d1, . . . , dn

,H, I)d~✓1 . . . d~✓
n

=
1

p(d1, . . . , dn

, |H, I)

Z
p(~✓EOS, ~✓1, . . . , ~✓n

|I)

⇥ p(d1, . . . , dn

, |~✓EOS, ~✓1, . . . , ~✓n

,H, I) d~✓1 . . . d~✓
n

where Bayes’ theorem was used to get to the second line from the first. The prior

p(~✓EOS, ~✓1, . . . , ~✓n

|I) can be broken up as follows:

p(~✓EOS, ~✓1, . . . , ~✓n

|I) = p(~✓EOS|I)
nY

i=1

p(~✓
i

|~✓EOS, di

, I)

= p(~✓EOS|I)
nY

i=1

h
p(m1,i

, m2,i

|~✓EOS, I)

⇥ p(⇤̃
i

|m1,i

, m2,i

, ~✓EOS, I)p(~✓ex,i

|I)
i
,
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to be

the extrinsic parameters of ~✓
i

, which are {�⇤̃
i

, D
i

, ◆
i

,↵
i

, �
i

, 
i

,�ref,i, tref,i}, and these do not

depend on EOS parameters. Technically, �⇤̃ is an intrinsic tidal deformability parameter

which provides additional EOS information. However, we have shown in Sec. 4.3.3 that

it is unmeasurable with aLIGO, so we marginalize it out along with the rest of the

extrinsic parameters. Because the likelihood p(d1, . . . , dn

, |~✓EOS, ~✓1, . . . , ~✓n

,H, I) depends

on n di↵erent BNS events and only depends on the waveform parameters, not the EOS

parameters, it can be written as a product of single-event likelihoods like so

p(d1, . . . , dn

, |~✓EOS, ~✓1, . . . , ~✓n

,H, I) =
nY

i=1

p(d
i

|~✓
i

,H, I).

The variables of integration d~✓1 . . . d~✓
n

can also be split up into their extrinsic and intrinsic

parts. By then reorganizing the integral, the marginalized posterior can be written

p(~✓EOS|d1, . . . , dn

,H, I) =
1

p(d1 . . . , d
n

|H, I)

Z
p(~✓EOS|I)

⇥
"

nY

i=1

p(m1,i

, m2,i

|~✓EOS, I)p(⇤̃
i

|m1,i

, m2,i

, ~✓EOS, I)

⇥
Z

p(~✓ex,i

|I)p(d
i

|~✓
i

,H, I)d~✓ex,i

�
d~✓in,1 . . . d~✓in,n

Here, we take ~✓in,i

to be the intrinsic parameters of ~✓
i

, which are {⇤̃
i

, m1,i

, m
i,2}. We now

use the fact that the EOS parameters and the mass parameters together determine the

tidal parameters to write the prior in ⇤̃ as

p(⇤̃
i

|m1,i

, m2,i

, ~✓EOS, I) = �(⇤̃
i

� ⇤̃(m1,i

, m2,i

, ~✓EOS)).

The marginalized posterior is now

p(~✓EOS|d1, . . . , dn

,H, I) =
1

p(d1 . . . , d
n

|H, I)

Z
p(~✓EOS|I)

"
nY

i=1

p(m1,i

, m2,i

|~✓EOS, I)

⇥
Z

p(~✓ex,i

|I)p(d
i

|~✓
i

,H, I)d~✓ex,i

�

⇤̃i=⇤̃(m1,i,m2,i,
~

✓EOS)

#

⇥ dm1,1dm2,1 . . . dm1,n

dm2,n

.

By realizing that

L(d
i

; ~✓in,i

,H, I) =

Z
p(~✓ex,i

|I)p(d
i

|~✓
i

,H, I)d~✓ex,i

(5.3.3)
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parameters can be written

p(~✓EOS|d1, . . . , dn

,H, I) =
1

p(d1 . . . , d
n

|H, I)

Z
p(~✓EOS|I)

⇥
nY

i=1

h
p(m1,i

, m2,i

|~✓EOS, I)

⇥ L(d
i

; ~✓in,i

,H, I)|⇤̃i=⇤̃(m1,i,m2,i,
~

✓EOS)

i

⇥ dm1,1dm2,1 . . . dm1,n

dm2,n

. (5.3.4)

Estimating p(~✓EOS|d1, . . . , dn

,H, I) can now be broken into two stages: 1) solve for the

quasi-likelihood in Eq. (5.3.3), which is easily estimated by the marginalized posterior

samples for each event using the LALInferenceMCMC sampler, and 2) solve 5.3.4, which

is done using another MCMC routine.

5.3.2 Implementation

The two-stage approach to calculate Eq. (5.3.4) is implemented in the following way:

1. Stage 1: Given d1, . . . , dn

, run each data stream segment through the

LALInferenceMCMC parameter estimation pipeline. This takes steps in the param-

eters ~✓
i

= {Mc,i, qi

, ⇤̃
i

, �⇤̃
i

, D
i

, ◆
i

,↵
i

, �
i

, 
i

,�ref,i, tref,i} and calculates the likelihood

from Eq. (4.3.4) at each point. The output of the MCMC sampler is just a list of

parameter points for each segment d
i

. The density of the MCMC samples is an

estimation of the underlying posterior distribution p(~✓
i

|d
i

,H, I) and can be used to

construct this distribution, if desired.

2. Marginalize each posterior over extrinsic parameters, which by definition is calcu-

lated through an integration: p(Mc,i, qi

, ⇤̃
i

|d
i

,H, I) =
R

p(~✓
i

|d
i

,H, I)d~✓ex,i

, where

we group the unmeasurable �⇤̃
i

with the extrinsic parameters ~✓ex,i

. However, one of

the conveniences of using an MCMC algorithm is that this integration is equivalently

(but much more simply) accomplished by storing only the information from the in-

trinsic parameters for each MCMC sample. Thus, no integration is required to find

marginalized MCMC samples which can be used to construct p(Mc,i, qi

, ⇤̃
i

|d
i

,H, I),

if desired.
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1013. Using ⌘ = q/(1 + q)2, perform a coordinate transformation from q
i

! ⌘
i

for each

marginalized MCMC sample of the intrinsic parameters.

4. Construct p(Mc,i, ⌘i

, ⇤̃
i

|d
i

,H, I) from the density of the marginalized MCMC sam-

ples. This is done using a Gaussian kernel density estimator (KDE) on the intrinsic

parameter samples. For our case, the function p(Mc,i, ⌘i

, ⇤̃
i

|d
i

,H, I) is equal to

L(d
i

; ~✓in,i

,H, I) of Eq. (5.3.4) because the intrinsic parameter priors are uniform,

which will be discussed shortly.

5. Stage 2: Given p(Mc,i, ⌘i

, ⇤̃
i

|d
i

,H, I) for each data stream segment d
i

, use another

MCMC simulation to estimate the integrand of Eq. (5.3.4). We chose the a�ne-

invarient ensemble sampler emcee for our analysis [101]. We set up this MCMC

sampler to take steps in 4 + 2n parameters: 4 EOS parameters (common to each

system) and 2 mass parameters (independent for each system). These parameters

are {log(p1), �1, �2, �3,Mc,1, ⌘1, . . . ,Mc,n, ⌘n

}. We calculate the joint likelihood of

each sample by calculating {⇤̃
i

,Mc,i, ⌘i

} from {log(p1), �1, �2, �3,Mc,i, ⌘i

}, finding

the value of the quasi-likelihood at that point using the function L(d
i

; ~✓in,i

,H, I) =

p(Mc,i, ⌘i

, ⇤̃
i

|d
i

,H, I) from Step 4, and taking the product of each quasi-likelihood.

The priors used are the mass and EOS priors in the integrand of Eq. (5.3.4).

6. Marginalize over the masses to obtain samples from p(~✓EOS|d1, . . . , dn

,H, I). Again,

this is done by simply storing only the information from the EOS parameters for

each MCMC sample.

7. Construct p(~✓EOS|d1, . . . , dn

,H, I) from the density of the marginalized MCMC sam-

ples. This is done using a Gaussian KDE on the intrinsic parameter samples.

The priors used in the Stage-1 MCMC are those outlined in Sec. 4.3.2. However, when

we injected 1 M� NSs, we reduced the lower limit on the component mass priors to be

0.5 M�  m2  m1  30 M� and the upper limit of the measurable tidal deformability

parameter to be 0  ⇤̃  5000. This was to ensure that our posterior distributions were

not a↵ected by the choice of our prior distributions.

The priors used in the “Stage 2” MCMC are as follows. The prior distribution for

the EOS parameters are uniform in 33.5  log(p1)  34.5, where p1 is in cgs units,
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on the EOS parameters are that the speed of light must be greater than the speed of

sound (
p

dp/d✏ < c) and that the EOS must support the largest observed NS, which we

take to be the pulsar J0348+0432 with a 2� lower-bound mass of 1.93 M� (conditions 3

and 4 of Sec. 5.2). Lastly, we also require that ⇢0 � 2.63 ⇥ 1012 g/cm3, which restricts

small values of �1 for large log(p1) (see [99]). We also use uniform prior distributions in

1 M�  m2  m1  3 M�, unless injecting 1 M� NSs, in which case we use uniform prior

distributions in 0.5 M�  m2  m1  3 M�. A 3 M� upper limit in component mass

(as opposed to the 30 M� upper limit of the “Stage 1” MCMC) fully contains the major

contributions of each posterior as well as the allowed NS masses for all viable EOSs.

5.4 Measuring the NS EOS

We seek to characterize the ability of the Advanced LIGO–Virgo network to measure

the NS EOS from detected BNS events. To do so, we simulate a realistic population of

coalescing BNS events.

5.4.1 The baseline simulated BNS population

The key properties of our simulated BNS population are as follows.

• Number of events: The number of coalescing BNS events accessible to the Ad-

vanced LIGO–Virgo network depends on the BNS inspiral rate per Milky Way

Equivalent Galaxy (MWEG), the number density of MWEGs, and the observa-

tional time. We choose to use the “realistic” BNS inspiral rate and number density

from Ref. [53], which are 100 events / Myr / MWEG and 0.0116 MWEGs / Mpc3

respectively. We also choose an observational time of one full year of data where all

three detectors are taking data simultaneously. These three numbers can be used

to determine the number of coalescing BNS systems within a volume of radius r

through

NBNS(r) =

✓
100

BNS events

MWEG Myr

◆✓
1

106

Myr

yr

◆✓
0.0116

MWEG

Mpc3

◆✓
4

3
⇡r3

◆
(1 yr) .

(5.4.1)
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we construct a Poisson distribution with mean NBNS(rmax), where rmax is chosen to

overestimate the reach of the Advanced LIGO–Virgo network. We then draw from

this Poisson distribution to determine the number of BNS systems to simulate.

• System parameter distributions: We distribute the BNS systems uniformly in

volume and orientation. We draw the mass of each NS from a uniform distribution

between 1.2 M� and 1.6 M�, which is chosen to resemble the Gaussian distribution

of Ref. [102]. We assumed that the NSs were non-spinning for this analysis.

• Detector properties: The detector sensitivity is characterized by their PSDs. We

use the Advanced detector PSDs referenced in Sec. 4.3.2 for this analysis. Of the

BNS systems simulated ⇠120 had ⇢net � 8 and ⇠30 had ⇢net � 12, where ⇢net = 12

is often taken as a rough estimate of the detection threshold for a GW search. We

analyzed the loudest (largest ⇢net) 20 sources whose ⇢net, calculated by integrating

from fmin = 30 Hz to fISCO, ranged from 63.7 to 13.6.

• NS EOS: We choose to use the 4-piece polytropic fit of MPA1 from Ref. [99] as

the true EOS for every BNS event in our simulated population. The MPA1 EOS

is considered a moderate EOS, and using its fit instead of its true tabulated form

separates systematic error e↵ects from using an inexact EOS model and an inexact

waveform model, which is discussed later in this chapter.

We injected signals from this baseline population into zero-noise data to separate the

e↵ects of statistical fluctuations in noise from our results and estimate the most probable

measurement uncertainty of EOS parameters, as described in Sec. 4.3.3. In Fig. 22, we

present the 1�, 2�, and 3� credible regions found when combining information from the

loudest 20 events to measure the NS EOS. These figures are made in the following way.

First, the independent parameter (either ⇢ or m) is binned, and each bin is assigned a

value for the independent parameter (i.e. the midpoint of the bin). Next, the dependent

parameter value (p, R, or �) at a specific bin for each MCMC sample is calculated from

the EOS specified by the marginalized EOS parameters and the value of the independent

parameter at that bin. The dependent parameter samples for each independent parameter
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Figure 22 : Measurement uncertainty in the recovered EOS p(⇢), radius R(m), and tidal deformability
�(m) for the loudest 20 events of the baseline BNS population. The red, green, and blue shaded regions
represent the 1�, 2�, and 3� credible regions respectively. The “true” pressure in the bottom left panel is
the pressure of the injected EOS, which in this case is the fit to the MPA1 EOS. In the right panels, the
dotted vertical line at 1.93 M� is the mass above which some accepted EOS parameters do not produce
a stable NS, and this mass is set by the prior.

bin are histogrammed, and the credible intervals are calculated for each bin. Once this is

done for every independent variable bin, the credible intervals in each bin are connected

across the full space to become the contours shown. A slight complication arises for the

plots binned in component mass. Each proposed EOS has a maximum supported NS

mass. When considering mass bins above 1.93 M�, not all the EOSs for each MCMC

sample formed stable NSs at that mass. Instead, masses above 1.93 M� resulted in black

holes for some EOS models, and the radius and tidal deformability distributions became

bimodal with delta function peaks at the Schwarzschild radius and � = 0. Therefore, the

credible intervals in radius and tidal deformability for masses above 1.93 M� represent

the fraction of the MCMC samples that produce a NS or a black hole.
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sure the NS EOS. Combining information from the loudest 20 BNS events in a year of

triple-coincident data, radius measurements for NSs between 1–2 M� are achievable with

an uncertainty of less than 1 km. Additionally, constraints can be placed on the EOS

even for NSs not within this mass range, though these constraints are admittedly not as

tight. This would be a great achievement if accomplished.

It is apparent from the p/ptrue plot in Fig. 22, however, that a large portion of the

credible interval in certain density regions is a result of the EOS parameterization. Firstly,

there is relatively larger uncertainty in the pressure around the fixed transition densities

⇢1 and ⇢2. A model whose transition densities are free parameters, such as the one

presented in [103], would not experience such features. Secondly, the credible interval

seem to underestimate ptrue at large densities. This is where we are running up against

the causality limit. The maximum speed of sound for the MPA1 EOS is vs,max = 0.994.

The 4-piece fit to this EOS overestimates this quantity by roughly 5%. However, since

vs,max must be less than c and the corresponding 4-piece fit overestimates vs,max, the lower

pressure MCMC samples get regularly accepted. Thirdly, the credible intervals are large

below nuclear density because there is relatively little mass below nuclear density, and the

model provides minimal information for how the core and crust EOSs are joined. This

analysis would surely benefit from using a di↵erent EOS parameterization, such as the

ones presented in Refs. [103] and [104].

5.4.2 Results dependencies

In our hypothetical scenario, we are passed a list of BNS detections made in a year’s

worth of 3-detector observing segments, and we chose to analyze the loudest 20 signals

to put constraints on the NS EOS shown in Fig. 22. How would these results change if

we chose more or less signals to analyze? The left plots in Fig. 23 demonstrates how the

EOS constraints are a↵ected by the number of signals analyzed. It turns out that the

majority of EOS information is provided by the loudest ⇠5 signals (⇢net & 20), and the

credible intervals do not noticeably improve by including any additional signals.

In Sec. 5.3, we outlined the prior distributions and constraints used in our analysis.
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derived from the observation of the massive pulsar J0348+0432. What if an even more

massive NS is observed? To consider this e↵ect, we take PSR B1957+20, which is a black

widow pulsar found to have a mass of 2.40± 0.12 M�, though a more conservative lower

limit of 1.66 M� is more appropriate [105], and assume that its mass is 2.4 M�. We

present our results in the right plots of Fig. 23. The 2� prior contours for the di↵erent

maximum mass observations are plotted as dashed lines. By requiring proposed EOS to

support NSs at 2.4 M�, we find significantly tighter constraints on the lower bound of the

pressure above ⇢ ⇠ ⇢1 and on the lower bound of the NS EOS for large masses. The upper

bound for large densities and masses, however, does not change since it is determined by

the causality requirement.

The mass distribution of our population was chosen to be uniform between 1.2–1.6 M�.

What if the true BNS mass distribution were actually higher or lower than expected? We

might expect that a population of low-mass NSs would better constrain the EOS at low

densities and a population of high-mass NSs would better constrain the EOS at high

densities, since a NS’s density increases with its mass. This is exactly what we see in the

left plots in Fig. 24. Here, we compared four di↵erent populations: the baseline population

containing NSs with masses uniformly distributed between 1.2–1.6 M�, a population of

just 1.0 M� NSs, a population of just 1.4 M� NSs, and a population of just 1.8 M� NSs.

We analyzed the loudest 5 sources keeping everything else the same. Additionally, we find

that the EOS constraints from the population of all 1.4 M� NSs are extremely similar,

which suggests that even populations with very narrow mass distributions can provide

valuable constraints on the NS EOS.

We also found consistent results to those in Fig. 22 when considering di↵erent “true”

EOSs. Since these MCMC runs are computationally expensive, we considered param-

eter estimation on various EOSs using the Fisher Information Matrix (FM). First, we

demonstrated a remarkable consistency between MCMC results and FM results. We

then considered a handful of candidate EOSs, and showed that they too result in tight

EOS constraints and that these constraints are e↵ective at ruling out false EOS models.

The results of this analysis can be found in Ref. [95].
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In Sec. 5.4.1, we model the event rate by a Poisson process and determine the number

of systems to simulate within a given volume by drowning from a Poisson distribution.

What e↵ect does this have on our analysis? In the right plots in Fig. 24, we consider four

additional populations with exactly the same properties but a di↵erent draw from the

Poisson distribution. Our results seem roughly consistent across the di↵erent populations.

In each of our results so far, we injected signals into zero-noise to estimate the most

probable measurement uncertainty of EOS parameters. How much might individual noise

realizations a↵ect our results? In the left plots in Fig. 25, we inject the loudest 5 signals

into di↵erent realizations of synthetic noise, and we do this 5 di↵erent times. Again, our

results seem roughly consistent across the di↵erent noise realizations, and the statistical

error from a given noise distribution will only be washed out more by analyzing additional

signals. Also, as expected, the zero-noise results seem to be an average representation of

the contours from di↵erent noise realizations.

As demonstrated in Sec. 4.5.1, the biggest obstacle to measuring the NS EOS with ad-

vanced GW detectors is the systematic error from waveform uncertainty. The right plots

in Fig. 25 reiterate the e↵ects of modeling bias in our pN waveforms on EOS parameter

estimation. Here we plot the results from three di↵erent runs where we inject the loudest

5 signals from our baseline population into zero-noise using the TaylorT1, TaylorF2, and

TaylorT4 waveform approximants. For each run, we use TaylorF2 templates for param-

eter estimation. Since each pN waveform is equally reliable to the same pN order, this

models our ignorance of the true waveform. We find that using pN waveforms results in

systematic error that is large enough to significantly bias the EOS measurements.

5.5 Conclusion

We have presented a new method to measure the NS EOS through the estimation of the

EOS parameters of a 4-piece polytropic model. We have shown through a full Bayesian

analysis of a simulated BNS population consistent with “realistic” merger rates that

advanced detectors ca measure the NS EOS to better than ±1 km. If achieved, such
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We also outlined the dependencies and sources of error for our results. We notably find

that (i) the majority of the information used to constrain the NS EOS when combining

many BNS signals comes from the loudest ⇠5 sources, which roughly correspond to a

⇢net & 20, (ii) the incorporation the of the existence of an even heavier NS into the

prior distribution can lead to much tighter EOS constraints at large masses and densities

but does not a↵ect constraints near small masses and densities, and (iii) our results

do not depend significantly on the particular realization of the chosen population or

the particular noise realizations into which each signal was injected. Our results also

reveal error due to the chosen EOS model. An avenue of future development would be

to incorporate an EOS model such as the one presented in Ref. [103] or [104] into this

analysis. Systematic errors due to waveform uncertainty are still the biggest obstacle to

overcome. Accurate waveform models that can be quickly generated and run through a

full Bayesian analysis in a reasonable amount of time must be developed and incorporated

into our analysis routines in order to make the kind of measurements presented in the

chapter.
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Figure 23 : Measurement uncertainty in the recovered EOS p(⇢), radius R(m), and tidal deformability
�(m) with the baseline BNS population. (Left) Contours represent the 2� credible regions for the
loudest 1, 5, and 20 events. The dashed gray line is the lower limit on the 2� credible region from just
the maximum observed mass and causality priors. (Right) Contours represent the 2� credible regions for
the loudest 20 events. The maximum observed NS mass is varied from 1.93 M� (blue) to 2.4 M� (blue).
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Figure 24 : Measurement uncertainty in the recovered EOS p(⇢), radius R(m), and tidal deformability
�(m). (Left) Contours represent the 2� credible regions for the loudest 5 events. Results use a variation
of the baseline population where all parameters are kept the same except the masses are varied to be all
1.0 M� (green dot-dashed), all 1.4 M� (blue dashed), and all 1.8 M� (magenta) and the associated tidal
parameters. Also shown is the lower limit of the 2� credible region from just the maximum observable
mass and causality priors. (Right) Contours represent the 2� credible regions for the loudest 5 events.
Results represent five di↵erent populations with the same event rate as the baseline population.
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Figure 25 : Measurement uncertainty in the recovered EOS p(⇢), radius R(m), and tidal deformability
�(m) with the baseline BNS population. (Left) Contours represent the 2� credible regions for the loudest
5 events in five di↵erent noise realizations. (Right) Contours represent the 2� credible regions for the
loudest 5 events injected using the waveform families labeled in the legend and recovered with TaylorF2
templates. Also shown is the lower limit of the 2� credible region from just the maximum observable
mass and causality priors.
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Chapter 6

Conclusion

With the advanced detector era of GW physics rapidly approaching, the first direct

detections of gravitational waves are just on the horizon. This dissertation presents work

on two promising sources of GWs detectable with advanced detectors: 1) isolated, rotating

NSs, and 2) compact binary coalescences.

In Ch. 2, we used a simulated population of isolated, rotating NSs to assess the de-

tectability of the Galactic NS population through detection of their continuous-wave emis-

sion and demonstrate how the number of detections can place meaningful constraints on

the properties of such a population. To do so, we evolved each star’s frequency through a

combination of electromagnetic and gravitational emission, which are respectively driven

by the star’s magnetic field and ellipticity. Since the GW strain depends on both the

ellipticity and orbital frequency of the star, which depends on the magnetic field and

ellipticity, the number of detections made by aLIGO can place constraints on these pa-

rameters. While our simulated population is admittedly primitive, this project was meant

to demonstrate how aLIGO can inform us about the magnetic field and ellipticity proper-

ties of Galactic NSs. Future work involves upgrading our population to be more realistic

by incorporating distributions in magnetic field and ellipticity, for instance.

Ch. 3 discusses the development of a CBC search for IMBHBs. Though the existence

of IMBHBs is still uncertain, if they do exist, they could be prime candidates for aLIGO.

In fact, advanced GW detectors might just be our best chance at a conclusive IMBH

detection. While a burst search for IMBHBs was performed on previous science runs,
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low-frequency sensitivity of the advanced detectors. IMBHB signals will be in band long

enough to warrant a matched filter search using CBC waveform models as filters. In our

first MDC, we demonstrated aLIGO’s incredible reach to large IMBHB sources, which

extends up to ⇠1,000 Mpc and probes cosmological scales! However, only non-spinning

systems were considered for simplicity. Our second MDC endeavors to test the search’s

sensitivity to spinning and precessing signals. Preliminary results point to transitioning

to an aligned-spin template bank to maintain and even surpass the sensitive distances

quoted in MDC1, but more investigations are needed before such a conclusion is definitive.

We will also have to explore the search’s sensitivity to the entire IMBHB mass parameter

space, and we hope to do this in an upcoming engineering run.

Ch. 4 studies the prospect of measuring the tidal interactions of BNS systems as they

coalesce. Leading-order and next-to-leading-order tidal corrections to PN waveforms af-

fect the high-frequency portion of the CBC waveform and can be parameterized by a single

parameter for each component. We outline the measurability of a linear combination of

these two parameters for various mass combinations and a moderate EOS.

The real quantity of interest is not the tidal parameters but the NS EOS. In Ch. 5,

we present a method to directly measure the EOS by measuring the parameters of a

robust EOS model. This method allows for the combination of information from many

BNS detections as well as the easy incorporation of physical and observational prior

information that help to improve measurability. We show that advanced detectors at

design sensitivity are capable of measuring the radii of NSs with canonical masses to

within a kilometer, which would be an extremely tight constraint on the NS EOS if

achieved.

The last remaining obstacle to overcome in order to make accurate EOS measurements

are models that can generate waveforms quickly enough to be run through a full Bayesian

parameter estimation routine but accurately enough to make unbiased measurements. In

Chs. 4 and 5, we observe large systematic error in EOS measurements from PN waveforms

with leading-order and next-to-leading-order tidal corrections. Such systematic error can

only be overcome through the development of waveforms that are more accurate. No
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accurately capture EOS e↵ects at high frequencies, and (ii) they are e�cient enough in

generation to be used in a full Bayesian parameter estimation routine.

By Fall of this year, aLIGO will be coming online. In this dissertation, we have

presented work geared toward three capabilities of advanced detectors: 1) The ability to

learn more about the Galactic NS population, 2) the possibility of the first conclusive

detection of IMBHs, and 3) potential NS EOS constraints as tight as ±1 km for NSs with

canonical masses. With all this and more on the horizon, the next several years promise

to be an exciting time to be a gravitational-wave physicist!
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(GXFDWLRQ

3HULRG 6HSWHPEHU ���� ± 3UHVHQW
'HJUHH 'RFWRU RI 3KLORVRSK\ LQ 3K\VLFV� H[SHFWHG 0D\ ����
6FKRRO 8QLYHUVLW\ RI :LVFRQVLQ � 0LOZDXNHH 0LOZDXNHH� :,

• 'LVVHUWDWLRQ� *UDYLWDWLRQDO ZDYHV IURP URWDWLQJ QHXWURQ VWDUV DQG FRPSDFW
ELQDU\ V\VWHPV

• $GYLVRUV� -ROLHQ &UHLJKWRQ DQG ;DYLHU 6LHPHQV
• 5DQNHG ��� IRU &RVPRORJ\�5HODWLYLW\�*UDYLW\ JUDGXDWH SURJUDPV E\ 8�6�

1HZV 	 :RUOG 5HSRUW� ����
• $ZDUGV� 6WXGHQW 6XFFHVV $ZDUG �IRU WHDFKLQJ�� 5HVHDUFK ([FHOOHQFH

$ZDUG� &KDQFHOORU¶V *UDG� 6WXGHQW $ZDUG� 3K\VLFV *UDG� 6WXGHQW $ZDUG

3HULRG 6HSWHPEHU ���� ± 0D\ ����
'HJUHH %DFKHORU RI 6FLHQFH LQ 3K\VLFV� ZLWK +RQRUV
6FKRRO %DWHV &ROOHJH /HZLVWRQ� 0(

• +RQRUV 7KHVLV� (OHFWURPDJQHWLFDOO\ LQGXFHG WUDQVSDUHQF\
• $GYLVRU� /LOLDQ &KLOGUHVV
• +RQRUV� 0DJQD &XP /DXGH� 3KL %HWWD .DSSD� 6LJPD ;L� 'HDQV /LVW�

1(6&$& $OO�$FDGHPLF ���� ± ����
• 3UHVLGHQW RI WKH 6RFLHW\ RI 3K\VLFV 6WXGHQWV �)DOO ���� ± 0D\ �����

5HFHQW 6FLHQWLILF (PSOR\PHQW � )HOORZVKLSV
3HULRG 6XPPHU ���� ± 6SULQJ ����� 6XPPHU ���� ± 6SULQJ ����

)HOORZVKLS :LVFRQVLQ 6SDFH *UDQW &RQVRUWLXP *UDGXDWH )HOORZVKLS
• 6XPPHU ���� ± 6SULQJ ����� 5HFRQVWUXFWLQJ WKH QHXWURQ�VWDU HTXDWLRQ

RI VWDWH ZLWK JUDYLWDWLRQDO�ZDYH GHWHFWRUV IURP D UHDOLVWLF SRSXODWLRQ RI
LQVSLUDOOLQJ ELQDU\ QHXWURQ VWDUV �/DFNH\� :DGH� �����

• 6XPPHU ���� ± 6SULQJ ����� &RQWLQXRXV JUDYLWDWLRQDO ZDYHV IURP LVR�
ODWHG JDODFWLF QHXWURQ VWDUV LQ WKH DGYDQFHG GHWHFWRU HUD �:DGH HW� DO�
�����

3HULRG 6XPPHU ���� ± )DOO ����� 6SULQJ ± )DOO ����� 6XPPHU ����
3RVLWLRQ 5HVHDUFK $VVLVWDQW
6FKRRO 8QLYHUVLW\ RI :LVFRQVLQ � 0LOZDXNHH 0LOZDXNHH� :,

• $GYLVRUV� -ROLHQ &UHLJKWRQ DQG ;DYLHU 6LHPHQV
• )RU PRUH GHWDLOV� VHH ³3ULPDU\ 3K�'� 5HVHDUFK ([SHULHQFH´�

3HULRG )DOO ���� ± 6SULQJ ����� )DOO ����� 6SULQJ ����� )DOO ����
3RVLWLRQ 7HDFKLQJ $VVLVWDQW
6FKRRO 8QLYHUVLW\ RI :LVFRQVLQ � 0LOZDXNHH 0LOZDXNHH� :,

• 3ULPDU\ ³,QWHUPHGLDWH $OJHEUD´ OHFWXUHU �)DOO �����
• /HG GLVFXVVLRQ VHVVLRQV IRU ³3K\VLFV IRU WKH +HDOWK 3URIHVVLRQV´ �6SULQJ

������ ³3K\VLFV LQ (YHU\GD\ /LIH´ �)DOO ������ DQG ³*HQHUDO 3K\VLFV ,´
�)DOO ���� ± 6SULQJ �����
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7HDFKLQJ ([SHULHQFH
3HULRG )DOO ���� ± 3UHVHQW
&ODVV ,QWHUPHGLDWH $OJHEUD
5ROH 6ROH /HFWXUHU 8: � 0LOZDXNHH

• /HDG WZR OHFWXUH VHFWLRQV� 0\ SULPDU\ UHVSRQVLELOLWLHV DUH FKDON�ERDUG OHF�
WXULQJ� JUDGLQJ� DQG FRRUGLQDWLQJ ZLWK RWKHU VHFWLRQV WR FRYHU WKH VDPH PD�
WHULDO�

• *DLQHG H[SHULHQFH ZLWK PDVWHU\�EDVHG HGXFDWLRQ VRIWZDUH FDOOHG $/(.6
• 7HDFKLQJ HYDOXDWLRQ VFRUHV� 1�$ �HVWLPDWHG GHSDUWPHQW DYHUDJH� 1�$�

3HULRG 6SULQJ ����
&ODVV 3K\VLFV IRU WKH +HDOWK 3URIHVVLRQV
5ROH 'LVFXVVLRQ /HDGHU 8: � 0LOZDXNHH

• /HG WKUHH GLVFXVVLRQ VHVVLRQV� 0\ SULPDU\ UHVSRQVLELOLWLHV ZHUH UHYLHZLQJ
OHFWXUH PDWHULDO LQ D PRUH HQJDJLQJ DQG LQWHUDFWLYH HQYLURQPHQW� VHWWLQJ XS
KRPHZRUN SUREOHPV� DQG JUDGLQJ KRPHZRUN DVVLJQPHQWV DQG H[DPV�

• 7HDFKLQJ HYDOXDWLRQ VFRUHV� ��������� �DSSUR[� GHSW� DYHUDJH� ����������

3HULRG )DOO ����
&ODVV 3K\VLFV LQ (YHU\GD\ /LIH
5ROH 'LVFXVVLRQ /HDGHU 8: � 0LOZDXNHH

• /HG IRXU GLVFXVVLRQ VHVVLRQV� 0\ SULPDU\ UHVSRQVLELOLWLHV ZHUH WR OHDG D
FDSWLYDWLQJ GLVFXVVLRQ WKDW WDXJKW WRSLFV IURP OHFWXUH LQ D PRUH HQJDJLQJ
DQG LQWHUDFWLYH ZD\�

• 7HDFKLQJ HYDOXDWLRQ VFRUHV� ��������� �DSSUR[� GHSW� DYHUDJH� ����������

3HULRG )DOO ���� ± 6SULQJ ����
&ODVV *HQHUDO 3K\VLFV , �1RQ�&DOF�
5ROH 'LVFXVVLRQ /HDGHU 8: � 0LOZDXNHH

• /HG VL[ GLVFXVVLRQ VHFWLRQV� 0\ PDLQ UHVSRQVLELOLWLHV ZHUH WR WHDFK VWX�
GHQWV KRZ WR VROYH SUREOHPV VLPLODU WR RQHV RQ WKHLU KRPHZRUNV� TXL]]HV�
DQG H[DPV� , DOVR JUDGHG KRPHZRUNV DQG TXL]]HV�

• 7HDFKLQJ HYDOXDWLRQ VFRUHV� ��������� �DSSUR[� GHSW� DYHUDJH� ����������

3HULRG )DOO ����
&ODVVHV ,QWURGXFWLRQ WR 4XDQWXP 0HFKDQLFV� &ODVVLFDO 3K\VLFV

5ROH 7XWRU %DWHV &ROOHJH
• 7XWRUHG VWXGHQWV LQ YDULRXV DVSHFWV RI 4XDQWXP 0HFKDQLFV DQG &ODVVLFDO

3K\VLFV� +HOSHG VWXGHQWV VHW XS GLIILFXOW SUREOHPV IURP KRPHZRUN DQG
XQGHUVWDQG FRQWHQW IURP FODVV�

3ULPDU\ 3K�'� 5HVHDUFK ([SHULHQFH
3HULRG 6SULQW ���� ± 3UHVHQW
3URMHFW $ JUDYLWDWLRQDO�ZDYH VHDUFK IRU LQWHUPHGLDWH PDVV EODFN KROH ELQDULHV

$GYLVRUV -ROLHQ &UHLJKWRQ DQG 3DWULFN %UDG\
/HDGLQJ WKH GHYHORSPHQW RI D PDWFKHG ILOWHU VHDUFK IRU JUDYLWDWLRQDO ZDYHV
IURP LQWHUPHGLDWH PDVV EODFN KROH ELQDULHV �,0%+%��
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3HULRG 6SULQJ ���� ± 3UHVHQW
3URMHFW 5HFRQVWUXFWLQJ WKH QHXWURQ�VWDU HTXDWLRQ RI VWDWH ZLWK JUDYLWDWLRQDO�

ZDYH GHWHFWRUV IURP D UHDOLVWLF SRSXODWLRQ RI LQVSLUDOOLQJ ELQDU\ QHX�
WURQ VWDUV �6XEPLWWHG WR 3K\V� 5HY� '�

$GYLVRU -ROLHQ &UHLJKWRQ
'HPRQVWUDWHG D QHZ PHWKRG WR LPSURYH IXWXUH QHXWURQ VWDU HTXDWLRQ RI
VWDWH FRQVWUDLQWV IURP JUDYLWDWLRQDO�ZDYH GHWHFWRUV E\ GLUHFWO\ PHDVXULQJ D
SDUDPHWHUL]HG HTXDWLRQ RI VWDWH PRGHO �/DFNH\� :DGH� ������

3HULRG :LQWHU ���� ± 3UHVHQW
3URMHFW /$/,QIHUHQFH VRIWZDUH GHYHORSPHQW
$GYLVRU -ROLHQ &UHLJKWRQ

&RQWULEXWLQJ WR WKH GHYHORSPHQW RI WKH 0DUNRY &KDLQ 0RQWH &DUOR VDP�
SOHU LQ /$/,QIHUHQFH� ZKLFK LV D JUDYLWDWLRQDO�ZDYH GDWD DQDO\VLV VRIWZDUH
SDFNDJH XVHG E\ WKH /,*2 FROODERUDWLRQ IRU %D\HVLDQ SDUDPHWHU HVWLPD�
WLRQ� E\ XSJUDGLQJ LW WR PRUH HIILFLHQWO\ PHDVXUH WLGDO SDUDPHWHUV�

3HULRG :LQWHU ���� ± 6SULQJ ����
3URMHFW 6\VWHPDWLF DQG VWDWLVWLFDO HUURUV LQ D ED\HVLDQ DSSURDFK WR WKH HVWLPD�

WLRQ RI WKH QHXWURQ�VWDU HTXDWLRQ RI VWDWH XVLQJ DGYDQFHG JUDYLWDWLRQDO�
ZDYH GHWHFWRUV �3XEOLVKHG LQ 3K\V� 5HY� '�

$GYLVRU -ROLHQ &UHLJKWRQ
8VHG ED\HVLDQ VLPXODWLRQV WR VWXG\ WKH PHDVXUDELOLW\ RI HTXDWLRQ�RI�VWDWH
SDUDPHWHUV HQFRGHG LQ JUDYLWDWLRQDO ZDYHV HPLWWHG E\ ELQDU\ QHXWURQ VWDUV�
DQG GHPRQVWUDWHG WKDW WKH FXUUHQW JUDYLWDWLRQDO ZDYHIRUPV ZHUH QRW \HW
VXLWDEOH IRU HVWLPDWLQJ WKHVH SDUDPHWHUV �:DGH HW� DO� ������

3HULRG :LQWHU ���� ± 6SULQJ ����
3URMHFW /$/6LPXODWLRQ VRIWZDUH GHYHORSPHQW
$GYLVRU -ROLHQ &UHLJKWRQ

$GGHG ILUVW� DQG VHFRQG�RUGHU WLGDO FRUUHFWLRQV WR VHYHUDO SRVW�1HZWRQLDQ
FRPSDFW ELQDU\ FRDOHVFHQFH ZDYHIRUP IDPLOLHV LQ /$/6LPXODWLRQ� ZKLFK
LV D JUDYLWDWLRQDO�ZDYH GDWD DQDO\VLV VRIWZDUH SDFNDJH XVHG E\ WKH /,*2
FROODERUDWLRQ WR VLPXODWH JUDYLWDWLRQDO ZDYHIRUPV�

3HULRG 6XPPHU ���� ± :LQWHU ����
3URMHFW &RQWLQXRXV JUDYLWDWLRQDO ZDYHV IURP LVRODWHG JDODFWLF QHXWURQ VWDUV LQ

WKH DGYDQFHG GHWHFWRU HUD �3XEOLVKHG LQ 3K\V� 5HY� '�
$GYLVRU ;DYLHU 6LHPHQV

8VHG D VLPXODWHG QHXWURQ VWDU SRSXODWLRQ WR DVVHVV WKH GHWHFWDELOLW\ RI WKH
LVRODWHG *DODFWLF QHXWURQ VWDU SRSXODWLRQ DQG FRQVWUDLQ LWV SURSHUWLHV �:DGH
HW� DO� ������

&RPSXWHU 6NLOOV
/DQJXDJHV 3URILFLHQF\ LQ 3\WKRQ� &�&��� /$7(;� /$/� JVWODO� *6/�
DQG 7RROV 691� *LW� 9LP

)DPLOLDULW\ ZLWK EDVK VFULSWLQJ� )2575$1� 0DWKHPDWLFD�
64/LWH� DQG ;0/

�
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6FLHQWLILF 2XWUHDFK � 9ROXQWHHU $FWLYLWLHV
3HULRG )DOO ����

$FWLYLW\ %ODFN +ROH %DVK 9ROXQWHHU 0LOZDXNHH� :,
9ROXQWHHUHG IRU WKH ³%ODFN +ROH %DVK´ HYHQW KRVWHG E\ WKH 8:�0LOZDXNHH
&HQWHU IRU *UDYLWDWLRQ� &RVPRORJ\� DQG $VWURSK\VLFV� ZKLFK HGXFDWHG WKH
JHQHUDO SXEOLF RQ EODFN KROH VFLHQFH�

3HULRG )DOO ���� ± )DOO ����
$FWLYLW\ $VWURQRP\ &OXE 0LOZDXNHH� :,

$WWHQGHG DQG SDUWLFLSDWHG LQ WKH $VWURQRP\ FOXE DW WKH 8:�0LOZDXNHH�

3HULRG )DOO ���� ± )DOO ����
$FWLYLW\ 7XWRU DW *UDFH )HOORZVKLS &KXUFK RI 0LOZDXNHH 0LOZDXNHH� :,

7XWRUHG HOHPHQWDU\ WKURXJK KLJK VFKRRO DJHG VWXGHQWV LQ WKH ORFDO FRPPX�
QLW\�

3HULRG 6XPPHU ����� )DOO ����
$FWLYLW\ /,*2 6FLHQFH 0RQLWRU +DQIRUG� :$

6SHQW WZR ZHHNV WUDLQLQJ DQG ZRUNLQJ DV D VFLHQFH PRQLWRU DW WKH /,*2
+DQIRUG 2EVHUYDWRU\�

�
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3XEOLFDWLRQV
3ULPDU\ 3XEOLFDWLRQV�

• %�'� /DFNH\ DQG/�:DGH� ³5HFRQVWUXFWLQJ WKH QHXWURQ�VWDU HTXDWLRQ RI VWDWH ZLWK JUDYLWDWLRQDO�
ZDYH GHWHFWRUV IURP D UHDOLVWLF SRSXODWLRQ RI LQVSLUDOOLQJ ELQDU\ QHXWURQ VWDUV´� 3K\V� 5HY�
'� ���������� )HE ����� �DU;LY�����������

• -� 9HLWFK� 9� 5D\PRQG� %� )DUU� :� 0� )DUU� 3� *UDII� 6� 9LWDOH� %� $\ORWW� .� %ODFNEXUQ�
1� &KULVWHQVHQ� 0� &RXJKOLQ� :� '� 3R]]R� )� )HUR]� -� *DLU� &� -� +DVWHU� 9� .DORJHUD� 7�
/LWWHQEHUJ� ,� 0DQGHO� 5� 2¶6KDXJKQHVV\� 0� 3LWNLQ� &� 5RGULJXH]� &� 5R̈YHU� 7� 6LGHU\� 5�
6PLWK� 0� 9� '� 6OX\V� $� 9HFFKLR� :� 9RXVGHQ� /� :DGH� ³5REXVW SDUDPHWHU HVWLPDWLRQ
IRU FRPSDFW ELQDULHV ZLWK JUDYLWDWLRQDO�ZDYH REVHUYDWLRQV XVLQJ /$/,QIHUHQFH´� 3K\V�
5HY� '� ���������� )HE ����� �DU;LY�����������

• /� :DGH� -� '� (� &UHLJKWRQ� (� 2FKVQHU� %� '� /DFNH\� %� )� )DUU� 7� %� /LWWHQEHUJ� DQG
9� 5D\PRQG� ³6\VWHPDWLF DQG VWDWLVWLFDO HUURUV LQ D ED\HVLDQ DSSURDFK WR WKH HVWLPDWLRQ
RI WKH QHXWURQ�VWDU HTXDWLRQ RI VWDWH XVLQJ DGYDQFHG JUDYLWDWLRQDO�ZDYH GHWHFWRUV´� 3K\V�
5HY� '� ���������� 0D\ ����� �DU;LY�����������

• /� :DGH� ;� 6LHPHQV� '� /� .DSODQ� %� .QLVSHO� DQG %� $OOHQ� ³&RQWLQXRXV JUDYLWDWLRQDO
ZDYHV IURP LVRODWHG JDODFWLF QHXWURQ VWDUV LQ WKH DGYDQFHG GHWHFWRU HUD´� 3K\V� 5HY� '�
���������� 'HF ����� �DU;LY�����������

/,*2 6FLHQWLILF &ROODERUDWLRQ SXEOLFDWLRQV� RI ZKLFK , DP DQ DXWKRU�

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³6HDUFKLQJ IRU
VWRFKDVWLF JUDYLWDWLRQDO ZDYHV XVLQJ GDWD IURP WKH WZR FR�ORFDWHG /,*2 +DQIRUG GHWHF�
WRUV�´ 3K\V� 5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³,PSURYHG
8SSHU /LPLWV RQ WKH 6WRFKDVWLF *UDYLWDWLRQDO�:DYH %DFNJURXQG IURP ��������� /,*2
DQG 9LUJR 'DWD�´ 3K\V� 5HY� /HWW� ��� ������ �������

• 7KH ,FH&XEH &ROODERUDWLRQ� 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ�
0�*� $DUWVHQ� HW DO� ³0XOWLPHVVHQJHU 6HDUFK IRU 6RXUFHV RI *UDYLWDWLRQDO :DYHV DQG
+LJK�HQHUJ\ 1HXWULQRV� 5HVXOWV RI WKH ,QLWLDO /,*2�9LUJR DQG ,FH&XEH�´ 3K\V� 5HY� ' ��
������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³,PSOHPHQ�
WDWLRQ RI DQ )�VWDWLVWLF DOO�VN\ VHDUFK IRU FRQWLQXRXV JUDYLWDWLRQDO ZDYHV LQ 9LUJR 965�
GDWD�´ &ODVV� 4XDQWXP *UDY� �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³)LUVW DOO�
VN\ VHDUFK IRU FRQWLQXRXV JUDYLWDWLRQDO ZDYHV IURP XQNQRZQ VRXUFHV LQ ELQDU\ V\VWHPV�´
3K\V� 5HY� ' �� ������� �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³)LUVW 6HDUFKHV
IRU 2SWLFDO &RXQWHUSDUWV WR *UDYLWDWLRQDO�ZDYH &DQGLGDWH (YHQWV´� $S-6 ��� ������ ��

�
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• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³&RQVWUDLQWV
RQ FRVPLF VWULQJV IURP WKH /,*2�9LUJR JUDYLWDWLRQDO�ZDYH GHWHFWRUV´� 3K\V� 5HY� /HWW�
��� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³$SSOLFDWLRQ
IURP D+RXJK VHDUFK IRU FRQWLQXRXV JUDYLWDWLRQDO ZDYHV RQ GDWD IURP WKH �WK /,*2 VFLHQFH
UXQ´� &ODVV� 4XDQWXP *UDY� �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³7KH 1,1-$��
SURMHFW� 'HWHFWLQJ DQG FKDUDFWHUL]LQJ JUDYLWDWLRQDO ZDYHIRUPV PRGHOOHG XVLQJ QXPHULFDO
ELQDU\ EODFN KROH VLPXODWLRQV´� &ODVV� 4XDQWXP *UDY� �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³6HDUFK IRU
JUDYLWDWLRQDO ZDYH ULQJGRZQV IURP SHUWXUEHG LQWHUPHGLDWH PDVV EODFN KROHV LQ /,*2�
9LUJR GDWD IURP ���������´� 3K\V� 5HY ' �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³6HDUFK IRU
JUDYLWDWLRQDO ZDYHV DVVRFLDWHG ZLWK JDPPD�UD\ EXUVWV GHWHFWHG E\ WKH ,QWHU3ODQHWDU\ 1HW�
ZRUN´� 3K\V� 5HY� /HWW� ��� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³6HDUFK IRU
JUDYLWDWLRQDO UDGLDWLRQ IURP LQWHUPHGLDWH PDVV EODFN KROH ELQDULHV LQ GDWD IURP WKH VHFRQG
/,*2�9LUJR MRLQW VFLHQFH UXQ´� 3K\V� 5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³0HWKRGV DQG
UHVXOWV RI D VHDUFK IRU JUDYLWDWLRQDO ZDYHV DVVRFLDWHG ZLWK JDPPD�UD\ EXUVWV XVLQJ WKH
*(2���� /,*2� DQG 9LUJR GHWHFWRUV´� 3K\V� 5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³6HDUFK IRU
ORQJ�OLYHG JUDYLWDWLRQDO�ZDYH WUDQVLHQWV FRLQFLGHQW ZLWK ORQJ JDPPD�UD\ EXUVWV´� 3K\V�
5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³$ GLUHFWHG
VHDUFK IRU FRQWLQXRXV *UDYLWDWLRQDO :DYHV IURP WKH *DODFWLF &HQWHU´� 3K\V� 5HY� ' ��
������ �������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� WKH 9LUJR &ROODERUDWLRQ� -� $DVL� HW DO� ³3DUDPHWHU
HVWLPDWLRQ IRU FRPSDFW ELQDU\ FRDOHVFHQFH VLJQDOV ZLWK WKH ILUVW JHQHUDWLRQ JUDYLWDWLRQDO�
ZDYH GHWHFWRU QHWZRUN´� 3K\V� 5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF DQG WKH 9LUJR &ROODERUDWLRQV� -� $DVL� HW DO� ³6HDUFK IRU *UDYLWDWLRQDO
:DYHV IURP %LQDU\ %ODFN +ROH ,QVSLUDO� 0HUJHU DQG 5LQJGRZQ LQ /,*2�9LUJR 'DWD IURP
���������´� 3K\V� 5HY� ' �� ������ �������

• 7KH /,*2 6FLHQWLILF DQG WKH 9LUJR &ROODERUDWLRQV� -� $DVL� HW DO� ³(LQVWHLQ#+RPH DOO�
VN\ VHDUFK IRU SHULRGLF JUDYLWDWLRQDO ZDYHV LQ /,*2 6� GDWD´� 3K\V� 5HY� ' �� ������
�������

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� ³(QKDQFLQJ WKH VHQVLWLYLW\ RI WKH /,*2 JUDYLWDWLRQDO
ZDYH GHWHFWRU E\ XVLQJ VTXHH]HG VWDWHV RI OLJKW´� 1DWXUH 3KRWRQLFV � ������ ����

• 7KH $17$5(6 &ROODERUDWLRQ� WKH /,*2 6FLHQWLILF &ROODERUDWLRQ DQG WKH 9LUJR &ROODER�
UDWLRQ� 6� $GULDQ� 0DUWLQH]� HW DO� ³$ )LUVW 6HDUFK IRU FRLQFLGHQW *UDYLWDWLRQDO :DYHV DQG
+LJK (QHUJ\ 1HXWULQRV XVLQJ /,*2� 9LUJR DQG $17$5(6 GDWD IURP ����´� -&$3 ����
������ ����

�
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• 7KH /,*2 6FLHQWLILF DQG WKH 9LUJR &ROODERUDWLRQV� -� $EDGLH� HW DO� ³6HDUFK IRU *UDYL�
WDWLRQDO :DYHV IURP ,QWHUPHGLDWH 0DVV %LQDU\ %ODFN +ROHV´� 3K\V� 5HY� ' �� ������
�������

• 7KH /,*2 6FLHQWLILF DQG WKH 9LUJR &ROODERUDWLRQV� -� $EDGLH� HW DO� ³$OO�VN\ VHDUFK IRU
JUDYLWDWLRQDO� ZDYH EXUVWV LQ WKH VHFRQG /,*2�9LUJR UXQ´� 3K\V� 5HY� ' �� ������
�������

• 7KH /,*2 6FLHQWLILF DQG WKH 9LUJR &ROODERUDWLRQV� -� $EDGLH� HW DO� ³8SSHU OLPLWV RQ D
VWRFKDVWLF JUDYLWDWLRQDO�ZDYH EDFNJURXQG XVLQJ /,*2 DQG 9LUJR LQWHUIHURPHWHUV DW ����
���� +]´� 3K\V� 5HY� ' �� ������ �������

• -� $DVL� HW DO� ³7KH FKDUDFWHUL]DWLRQ RI 9LUJR GDWD DQG LWV LPSDFW RQ JUDYLWDWLRQDO�ZDYH
VHDUFKHV´� &ODVV� 4XDQWXP *UDY� �� ������ ������

• 3�$� (YDQV� HW DO� ³6ZLIW IROORZ�XS REVHUYDWLRQV RI FDQGLGDWH JUDYLWDWLRQDO�ZDYH WUDQVLHQW
HYHQWV´� $S-6 ��� ������ ���

• 7KH /,*2 6FLHQWLILF &ROODERUDWLRQ� 9LUJR &ROODERUDWLRQ� -� $EDGLH� HW DO� ³6HDUFK IRU
JUDYLWDWLRQDO ZDYHV DVVRFLDWHG ZLWK JDPPD�UD\ EXUVWV GXULQJ /,*2 VFLHQFH UXQ � DQG
9LUJR VFLHQFH UXQV � DQG �´� $VWURSK\V� -� ��� ������ ���

3UHVHQWDWLRQV
,QYLWHG 7DONV�

• ³ 6HDUFKLQJ IRU LQWHUPHGLDWH�PDVV EODFN�KROH ELQDULHV DQGPHDVXULQJ WKH QHXWURQ�VWDU HTXD�
WLRQ RI VWDWH XVLQJ DGYDQFHG JUDYLWDWLRQDO�ZDYH GHWHFWRUV´� &,7 /,*2 VHPLQDU� &DOLIRUQLD
,QVWLWXWH RI 7HFKQRORJ\ �-DQ ������

• ³0HDVXULQJ WKH QHXWURQ�VWDU HTXDWLRQ�RI�VWDWH XVLQJ DGYDQFHG JUDYLWDWLRQDO�ZDYH GHWHF�
WRUV´� &,7 /,*2 VHPLQDU� &DOLIRUQLD ,QVWLWXWH RI 7HFKQRORJ\ �$SULO ������

&RQWULEXWHG 7DONV�

• ³2Q WKH IHDVLELOLW\ RI FRQVWUDLQLQJ WKH QHXWURQ VWDU HTXDWLRQ RI VWDWHZLWK DGYDQFHG JUDYLWDWLRQDO�
ZDYH GHWHFWRUV´� ��QG $QQXDO 0LGZHVW 5HODWLYLW\ 0HHWLQJ� 0LOZDXNHH� :, �2FWREHU
�����

• ³6WXG\LQJ WKH HIIHFWV RI WLGDO FRUUHFWLRQV RQ SDUDPHWHU HVWLPDWLRQ´� $PHULFDQ $VWURQRP�
LFDO 6RFLHW\ �$$6� $QQXDO 0HHWLQJ� /RQJ %HDFK� &$ �-DQXDU\ �����

• ³6WXG\LQJ WKH HIIHFWV RI WLGDO FRUUHFWLRQV RQ SDUDPHWHU HVWLPDWLRQ´� ��QG $QQXDO 0LGZHVW
5HODWLYLW\ 0HHWLQJ� &KLFDJR� ,/ �6HSWHPEHU �����

• ³6WXG\LQJ WKH HIIHFWV RI WLGDO FRUUHFWLRQV RQ SDUDPHWHU HVWLPDWLRQ"´� *UDYLWDWLRQDO :DYH
3K\VLFV DQG $VWURQRP\ :RUNVKRS �*:3$:�� +DQQRYHU� *HUPDQ\ �-XQH �����

• ³&RQWLQXRXV JUDYLWDWLRQDO�ZDYH VRXUFHV IURP JDODFWLF QHXWURQ VWDUV LQ WKH DGYDQFHG GH�
WHFWRU HUD´� ��VW $QQXDO 0LGZHVW 5HODWLYLW\ 0HHWLQJ� 8UEDQD� ,/ �1RYHPEHU �����

• ³&RQWLQXRXV JUDYLWDWLRQDO�ZDYH VRXUFHV IURP JDODFWLF QHXWURQ VWDUV LQ WKH DGYDQFHG GH�
WHFWRU HUD´� ��WK $QQXDO 0LGZHVW 5HODWLYLW\ 0HHWLQJ� *XHOSK� 21� &DQDGD �1RYHPEHU
�����

�
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&RQWULEXWHG 3RVWHU 3UHVHQWDWLRQV�

• ³$ VHDUFK IRU LQWHUPHGLDWH�PDVV EODFN KROH ELQDULHV XVLQJ JVWODO´� /,*26FLHQWLILF &ROODERUDWLRQ�
9LUJR &ROODERUDWLRQ 0HHWLQJ� 6WDQIRUG� &$ �$XJXVW �����

• ³6WXG\LQJ WKH HIIHFWV RI WLGDO FRUUHFWLRQV RQ SDUDPHWHU HVWLPDWLRQ´� ��WK ,QWHUQDWLRQDO
&RQIHUHQFH RQ *HQHUDO 5HODWLYLW\ DQG *UDYLWDWLRQ DQG ��WK $PDOGL &RQIHUHQFH RQ *UDY�
LWDWLRQDO :DYHV� :DUVDZ� 3RODQG �-XO\ �����

• ³6WXG\LQJ WKH HIIHFWV RI WLGDO FRUUHFWLRQV RQ SDUDPHWHU HVWLPDWLRQ´� /,*26FLHQWLILF &ROODERUDWLRQ�
9LUJR &ROODERUDWLRQ 0DUFK 0HHWLQJ� %HWKHVGD� 0' �0DUFK �����

• ³&RQWLQXRXV JUDYLWDWLRQDO�ZDYH VRXUFHV IURP JDODFWLF QHXWURQ VWDUV LQ WKH DGYDQFHG GH�
WHFWRU HUD´� ���WK $PHULFDQ $VWURQRPLFDO 6RFLHW\ �$$6� -DQXDU\ 0HHWLQJ� $XVWLQ� 7;
�-DQXDU\ �����

�
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